K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 3 2019

Phương trình hoành độ giao điểm là

\(x^4-3\left(m+2\right)x^2+3m=-1\)

Đặt \(t=x^2\left(t\ge0\right)\), phương trình trở thành

\(t^2-3\left(m+2\right)t+1=0\)

\(\Leftrightarrow\)\(\left[{}\begin{matrix}t=1\\t=3m+1\end{matrix}\right.\)

Yêu cầu của bài toán tương đương

\(\left\{{}\begin{matrix}0< 3m+1< 4\\3m+1\ne1\end{matrix}\right.\)\(\Leftrightarrow-\dfrac{1}{3}< m< 1,m\ne0\)

18 tháng 10 2021

cho em hỏi đoạn yêu cầu bài toán với ạ

21 tháng 4 2016

Phương trình hoành độ giao điểm của \(\left(C_m\right)\) và đường thẳng y = -1 là :

\(x^4-\left(3m+2\right)x^2+3m=-1\Leftrightarrow\left(x^2-1\right)\left(x^2-3m-1\right)=0\)

Đường thẳng y = -1 cắt  \(\left(C_m\right)\) tại 4 điểm phân biệt có hoành độ nhỏ hơn 2 khi và chỉ khi :

\(0 < 3m+1 < 4\) và \(3m+1\ne1\)

\(\Leftrightarrow\)\(-\frac{1}{3}< m\)< 1 và \(m\ne0\)

 
20 tháng 4 2018

28 tháng 10 2019

Phương trình hoành độ giao điểm: x4-(3m+4) x2+ m= 0       ( 1)

Đặt t= x2, phương trình trở thành: t2-(3m+4)t+ m= 0       ( 2)

C cắt trục hoành tại bốn điểm phân biệt khi và chỉ khi ( 1) có bốn nghiệm phân biệt

Khi đó ( 2) có hai nghiệm dương phân biệt 

+ Khi đó phương trình *(2) có hai nghiệm 0<t1< y2. Suy ra phương trình (1)  có bốn nghiệm phân biệt là x 1 = - t 2 < x 2 = - t 1 < x 3 = t 1 < x 4 = - t 2  . Bốn nghiệm x1; x2; x3; x4 lập thành cấp số cộng

⇔ x 2 - x 1 = x 3 - x 2 = x 4 - x 3 ⇔ - t 1 + t 2 = 2 t 1 ⇔ t 2 = 3 t 1 ⇔ t 2 = 9 t 1                   ( 3 )

Theo định lý Viet ta có  t 1 + t 2 = 3 m + 4           ( 4 ) t 1 t 2 = m 2                               ( 5 )  

Từ (3) và (4) ta suy ra được  t 1 = 3 m + 4 10 t 2 = 9 ( 3 m + 4 ) 10   ( 6 ) .

Thay (6) vào  (5)  ta được 

 

Vậy giá trị m  cần tìm làm =12; m= -12/ 19

Chọn B.

11 tháng 5 2019

Phương trình hoành độ giao điểm: x4-(3m+4)x2+m2  =0 (1)

Đặt t = x≥ 0, phương trình (1) trở thành: t2-(3m+4)t+m2=0   (2)

(C) cắt trục hoành tại bốn điểm phân biệt khi (1) có bốn nghiệm phân biệt

Hay (2) có hai nghiệm dương phân biệt 

Khi đó phương trình (2) có hai nghiệm 0<t1<t2  Suy ra phương trình (1)  có bốn nghiệm phân biệt là cW4mmwmwO8sO.png

Bốn nghiệm x1; x2 ; x3; x4 lập thành cấp số cộng

Vậy giá trị m cần tìm là m=12; m=-12/19; có 1 giá trị nguyên của m thỏa mãn yêu cầu đề bài.

Chọn B.