Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hoành độ giao điểm là nghiệm của pt
\(x^3+3x^2+mx+1=1\Leftrightarrow x\left(x^2+3x+m\right)=0\)
\(x=0;x^2+3x+m=0\)(*)
để (C) cắt y=1 tại 3 điểm phân biệt thì pt (*) có 2 nghiệm phân biệt khác 0
\(\Delta=3^2-4m>0\) và \(0+m.0+m\ne0\Leftrightarrow m\ne0\)
từ pt (*) ta suy ra đc hoành độ của D, E là nghiệm của (*)
ta tính \(y'=3x^2+6x+m\)
vì tiếp tuyến tại Dvà E vuông góc
suy ra \(y'\left(x_D\right).y'\left(x_E\right)=-1\)
giải pt đối chiếu với đk suy ra đc đk của m
Chọn C.
Phương pháp: Sử dụng phương trình hoành độ giao điểm và định lý Viet.
Cách giải: Phương trình hoành độ giao điểm là
Vì a,c là nghiệm của (*) nên theo định lý Viet ta có:
Xét phương trình hoành độ giao điểm:
Để đường thẳng d cắt (C) tại 2 điểm phân biệt ⇔ p t * có 2 nghiệm phân biệt khác 1.
Gọi x A ; x B là 2 nghiệm phân biệt của (*), áp dụng định lí Vi-ét ta có:
Chọn D.
Đáp án D
Phương trình hoành độ giao điểm x + m = 2 x x + 1 x ≠ − 1 ⇔ x 2 + m + 1 x + m ∀ x ≠ 1 = 2 x
⇔ x 2 + m − 1 x + m = 0 x ≠ − 1 Để d cắt đồ thị hàm số y = 2 x x + 1 tại 2 điểm phân biệt ⇔ g x = x 2 + m − 1 x + m = 0 có 2 nghiệm phân biệt khác .
Khi đó g − 1 = 2 ≠ 0 Δ = m − 1 2 − 4 m > 0 ⇒ m > 3 + 2 2 m < 3 − 2 2