Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đỉnh parabol : \(I\left(1;-m^2-m-2\right)\) nằm trên đt y = x - 3 \(\Leftrightarrow x=1;y=-m^2-m-2\) t/m ct h/s :
\(-m^2-m-2=1-3\)
\(\Leftrightarrow\left[{}\begin{matrix}m=0\\m=-1\end{matrix}\right.\)(loại m = 0)
a: Thay x=3 và y=0 vào (1), ta được:
\(6-3m=0\)
hay m=2
\(\Delta'=m^2+m\left(m^2+1\right)=m^3+m^2+m\)
Tọa độ đỉnh \(I\left(-\frac{b}{2a};-\frac{\Delta'}{a}\right)\Rightarrow I\left(1;-m^2-m-1\right)\)
Để I thuộc d \(\Rightarrow-m^2-m-1=1-2\)
\(\Leftrightarrow m^2+m=0\Rightarrow\left[{}\begin{matrix}m=0\left(l\right)\\m=-1\end{matrix}\right.\)
\(y=\left(m-1\right)x^2-2mx+m+2\)(1)
+) Nếu \(m-1=0\Leftrightarrow m=1\)thì :
(1) \(\Leftrightarrow y=-2x+3\)là hàm số bậc nhất có hệ số góc \(-2< 0\Rightarrow\)hàm số nghịch biến trên \(R\)
=> Hàm số nghịch biến trên \(\left(-\infty;2\right)\)
Vậy khi \(m=1\)hàm số nghịch biến trên \(\left(-\infty;2\right)\)(2)
+) Nếu \(m-1\ne0\Leftrightarrow m\ne1\)thì (1) là hàm số bậc hai
(1) nghịch biến trên \(\left(-\infty;2\right)\)thì đồ thị h/s có bề lõm hướng lên trên
\(\Rightarrow\hept{\begin{cases}a=m-1>0\\-\frac{b}{2a}\ge2\end{cases}}\Leftrightarrow\hept{\begin{cases}m>1\\\frac{2m}{2\left(m-1\right)}\ge2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}m>1\\m-2\left(m-1\right)\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}m>1\\m\le2\end{cases}}\)
\(\Rightarrow1< m\le2\)\(\Leftrightarrow\hept{\begin{cases}m>1\\m-2\left(m-1\right)\ge0\Leftrightarrow\hept{\begin{cases}m>1\\m\le2\end{cases}}\end{cases}}\)(3)
Từ (2) và (3) suy ra hàm số nghịch biến trên \(\left(-\infty;2\right)\)thì \(1\le m\le2\)
Câu 1: (P) : \(y=mx^2-2mx-3m-2\) ( m≠ 0)
(d) : y = 3x - 1
(P) có đỉnh I \(\left\{{}\begin{matrix}x_I=\dfrac{-b}{2a}=\dfrac{-\left(-2m\right)}{2m}=1\\y_I=m.1-2m.1-3m-2=-4m-2\end{matrix}\right.\)
⇔ đỉnh I ( 1; -4m - 2 )
Vì I ( 1; -4m - 2) ∈ (d) ⇔ -4m - 2 = 3 . 1 -1 ⇔ m= -1
Vậy m = -1
Câu 2: (P) : y = \(ax^2-4x+c\)
Vì (P) có hoành độ đỉnh bằng -3
⇔ x = -3
⇔ \(\dfrac{-b}{2a}=-3\)
⇔ \(\dfrac{-\left(-4\right)}{2a}=-3\)
⇔ a = \(-\dfrac{2}{3}\)
Mà M ( -2;1) ∈ (P) ⇔ 1 = 4 . \(\left(-\dfrac{2}{3}\right)\)- 4 . (-2) +c
⇔ 1= \(\dfrac{16}{3}\) +c
⇔ c = \(-\dfrac{13}{3}\)
Vậy S = a+c = \(\left(-\dfrac{2}{3}\right)+\left(-\dfrac{13}{3}\right)\)= -5
Phương trình hoành độ giao điểm là:
\(\dfrac{1}{4}x^2-mx+\dfrac{3}{2}m+1=0\)
=>\(x^2-4mx+6m+4=0\)
\(\text{Δ}=\left(-4m\right)^2-4\left(6m+4\right)\)
\(=16m^2-24m-16\)
Để (d) và (P) có 1 điểm chung thì Δ=0
=>16m^2-24m-16=0
=>m=2 hoặc m=-1/2
\(y=mx^2-2mx-m^2-1\)
\(=m\left(x^2-2x\right)-m^2-1\)
Điểm cố định của (d) có tọa độ là:
\(\left\{{}\begin{matrix}x^2-2x=0\\y=-m^2-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x\left(x-2\right)=0\\y=-m^2-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\in\left\{0;2\right\}\\y=-m^2-1\end{matrix}\right.\)
TH1: x=0
Thay x=0 và \(y=-m^2-1\) vào y=x-2, ta được:
\(-m^2-1=0-2=-2\)
=>\(m^2+1=2\)
=>\(m^2=1\)
=>\(\left[{}\begin{matrix}m=1\\m=-1\end{matrix}\right.\)
TH2: x=2
Thay x=2 và \(y=-m^2-1\) vào y=x-2, ta được:
\(-m^2-1=2-2=0\)
=>\(m^2+1=0\)
=>\(m^2=-1\)(vô lý)