Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$P=(x+y+z)^3-(x^3+y^3+z^3)=3(x+y)(y+z)(z+x)$ theo HĐT đáng nhớ.
Nếu $x,y,z$ cùng tính chẵn lẻ thì $x+y, y+z, z+x$ chẵn
$\Rightarrow (x+y)(y+z)(z+x)\vdots 8$
$\Rightarrow P\vdots 24$
Ta có đpcm.
Trần Quốc Tuấn hi: hai số $a,b$ cùng tính chẵn lẻ nghĩa là nếu $a$ chẵn thì $b$ chẵn, $a$ lẻ thì $b$ lẻ.
Hai số cùng tính chẵn lẻ thì tổng hoặc hiệu của chúng sẽ chẵn. Bằng chứng là chẵn + chẵn = chẵn, lẻ + lẻ = chẵn.
Áp dụng vào bài: $x,y,z$ cùng tính chẵn lẻ nên:
$x+y$ chẵn nên $x+y$ chia hết cho $2$
$y+z$ chẵn nên $y+z$ chia hết cho $2$
$z+x$ chẵn nên $z+x$ chia hết cho $2$
Do đó: $(x+y)(y+z)(z+x)$ chia hết cho $8$
Ta có (x^2 + y^2 )^3 + (z^2 – x^2 )^3 – (y^2 + z^2 )^3
= (x^2 + y^2 )^3 + (z^2 – x^2 )^3 + (-y^2 - z^2 )^3
Ta thấy x^2 + y^2 + z^2 – x^2 – y^2 – z^2 = 0
=> áp dụng nhận xét ta có: (x^2+y^2 )^3+ (z^2 -x^2 )^3 -y^2 -z^2 )^3
= 3(x^2 + y^2 ) (z^2 –x^2 ) (-y^2 – z^2 )
= 3(x^2+y^2 ) (x+z)(x-z)(y^2+z^2 )
\(\left(x^3-2x^2\right)-\left(x^2-2x\right)+\left(7x-14\right)+a+14⋮x-2\)
nên a+14 chia hết cho x+2 nên:
a+14=0 hay a=-14
Định làm Bê du nhưng lười:vvvv
Gọi f(x)=x3-3x2+5x+a; g(x)=x-2.
Gọi thương của phép chia f(x) cho g(x) là h(x)
Vì f(x) là đa thức bậc 3 mà chia cho g(x) là đa thức bậc nhất nên h(x) phải là đa thức bậc hay
=> h(x) có dạng x2+bx+c
Ta có: f(x)=g(x).h(x)
<=> x3-3x2+5x+a=(x-2)(x2+bx+c)
<=> x3-3x2+5x+a=x3+bx2-2x2+cx-2bx-2c
<=>x3-3x2+5x+a=x3-x2(2-b)+x(c-2b)-2c
Đồng nhất hệ số, ta được:
\(\hept{\begin{cases}2-b=3\\c-2b=5\\-2c=a\end{cases}\Rightarrow\hept{\begin{cases}b=-1\\c=3\\a=-6\end{cases}}}\)
Vậy a=-6
Lời giải:
Ta có:
\(x^3+y^3+z^3+mxyz=(x+y+z)^3-3(x+y)(y+z)(x+z)+mxyz\)
\(=(x+y+z)^3-3[xy(x+y)+yz(y+z)+xz(x+z)+2xyz]+mxyz\)
\(=(x+y+z)^3-3[xy(x+y+z)+yz(x+y+z)+xz(x+y+z)-xyz]+mxyz\)
\(=(x+y+z)^3-3(x+y+z)(xy+yz+xz)+3xyz+mxyz\)
\(=(x+y+z)(x^2+y^2+z^2-xy-yz-xz)+(m+3)xyz\)
Như vậy, để \(x^3+y^3+z^3+mxyz\vdots x+y+z, \forall x,y,z\) thì \((m+3)xyz\vdots x+y+z, \forall x,y,z\)
\(\Rightarrow m+3=0\Rightarrow m=-3\)
Cách khác :
Đặt : \(F=x^3+y^3+z^3+mxyz\)
Xem F là một đa thức theo x , kí hiệu : \(F\left(x\right)\)
Vì : \(\left(x+y+z\right)=x-\left(-y-z\right)\) và \(F\) ⋮ \(\left(x+y+z\right)\)
⇒ \(F\left(x\right)\text{⋮}\left[x-\left(-y-z\right)\right]\)
⇒ \(F\left(-y-z\right)=0\) ⇔ \(\left(-y-z\right)^3+y^3+z^3+m\left(-y-z\right)yz=0\)
⇔ \(-3yz\left(y+z\right)+m\left(-y-z\right)yz=0\)
⇔ \(-3yz\left(y+z\right)-m\left(y+z\right)yz\)
⇔ \(-yz\left(y+z\right)\left(m+3\right)=0\)
Đẳng thức trên đúng ∀y,z ⇔ m = - 3