K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2016

Thiếu M bạn ơi | nếu có thì bạn dùng định lí bơzu mà giải

23 tháng 12 2016

m đâu bạn

23 tháng 12 2016

 mk quên mất ở chỗ số 2 ấy

28 tháng 8 2018

A ( x ) = x3 - 3x2 + 5x + m 

          = x3 - 2x2 - x2 + 2x + 3x + m 

          = x2 ( x - 2 ) - x ( x - 2 ) + ( 3x + m )

           = ( x - 2 ) ( x2 - x ) + ( 3x + m )
Vì A chia hết cho x - 2 

=> ( x - 2 ) ( x2 - x ) + ( 3x + m ) chia hết cho x - 2

mà ( x - 2 ) ( x2 - x ) chi hết cho x - 2

=> 3x + m chia hết cho x - 2

 mà  3 ( x - 2 )  chia hết cho x - 2

=  3x - 6 chia hết cho x - 2

=> m = - 6

Vậy với m = - 6 thì A ( x ) = x3 - 3x2 + 5x + m chia hết cho B ( x ) = x - 2 

30 tháng 10 2015

a) đề  x3+x2-x +a chia hét cho (x-1)2 ?

x3+x2-x +a=x(x2-2x+1)+3(x2-2x+1)+4x-3+a đề sai nhé

b)A(2)=0=> 8-12+10+m=0  => m=6

c)2n2-n+2=2n(n+1)-3(n+1) +5 chia het cho n+1 khi n+1 là ước của 5

n+1=-1;1;-5;5

n=-2;0;-6;4

5 tháng 11 2019

2 là nghiệm của đa thức B(x)=x-2 

Để đa thức A(x)=x3-3x2+5x+m chia hết cho đa thức B(x)=x-2 thì 2 cũng là nghiệm của đa thức A(x)=x3-3x2+5x+m

\(\Rightarrow A\left(2\right)=8-12+10+m=0\)

\(\Leftrightarrow6+m=0\Leftrightarrow m=-6\)

Vậy m = -6 thì đa thức A(x)=x3-3x2+5x+m chia hết cho đa thức B(x)=x-2

5 tháng 11 2019

thực hiện phép chia hai đa thức ta có:

 (x3 - 3x2 + 5x + m ) : (x - 2) = x2  - x + 3  (dư m + 6)

Đa thức A(x) chia hết cho đa thức B(x) khi: m + 6 = 0  => m = - 6

Vậy m = - 6

                                                       

27 tháng 11 2020

3x^3 + 2x^2 - 7x + a 3x - 1 x^2 + x - 2 3x^3 - x^2 3x^2 - 7x 3x^2 - x -6x + a -6x + 2 a - 2

Để : \(3x^3+2x^2-7x+a⋮3x-1\)<=> \(a-2=0\)

<=> \(a=2\)

Vậy a = 2 

27 tháng 11 2020

3x^3 + 3x^2 + 5x + a x + 3 3x^2 - 6x + 22 3x^3 + 9x^2 -6x^2 + 5x -6x^2 - 18x 22x + a 22x + 66

Để \(x^3+3x^2+5x+a⋮x+3\)<=> \(a-66=0\)

<=> \(a=66\)

Vậy a = 66

AH
Akai Haruma
Giáo viên
6 tháng 8 2017

Lời giải:

Áp dụng định lý Bezout về phép chia đa thức:

Số dư của $A(x)$ khi chia cho $x-2$ là \(A(2)\)

Để \(A(x)\) chia hết cho $x-2$ thì $A(2)=0$

\(\Leftrightarrow A(2)=6+m=0\Leftrightarrow m=-6\)

a: 3x^3+2x^2-7x+a chia hêt cho 3x-1

=>3x^3-x^2+3x^2-x-6x+2+a-2 chia hết cho 3x-1

=>a-2=0

=>a=2

c: =>2x^2-6x+(a+6)x-3a-18+3a+19 chia x-3 dư 4

=>3a+19=4

=>3a=-15

=>a=-5

d: 2x^3-x^2+ax+b chiahêt cho x^2-1

=>2x^3-2x-x^2+1+(a+2)x+b-1 chia hết cho x^2-1

=>a+2=0 và b-1=0

=>a=-2 và b=1