K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2021

\(A\left(x\right)⋮B\left(x\right)\)

\(\Leftrightarrow2x^3-x^2+2x^2-x-3x+\dfrac{3}{2}+m-\dfrac{3}{2}⋮2x-1\)

\(\Leftrightarrow m=\dfrac{3}{2}\)

19 tháng 11 2020

a) \(x^3+x^2-x+a=\left(x^2-x+1\right)\left(x+2\right)+\left(a-2\right)\).

Đa thức trên chia hết cho \(x+2\) khi và chỉ khi a = 2.

b) \(x^3+ax^2+2x+b=\left(x^2+x+1\right)\left(x+1\right)+\left(a-2\right)x^2+\left(b-1\right)\) chia hết cho \(x^2+x+1\) khi và chỉ khi:

\(\frac{a-2}{1}=\frac{0}{1}=\frac{b-1}{1}\Leftrightarrow a=2;b=1\).

c) Tương tự.

26 tháng 10 2017

Nếu tối chưa có ai làm thì để mình làm cho,bây h mk bận phải đi học r

\(\dfrac{B\left(x\right)}{x^2+2x-5}=\dfrac{x^4-4x^3-19x^2+106x+m}{x^2+2x-5}\)

\(=\dfrac{x^4+2x^3-5x^2-6x^3-12x^2+30x-2x^2-4x+10+80x+m-10}{x^2+2x-5}\)

\(=x^2-6x-2+\dfrac{80x+m-10}{x^2+2x+5}\)

Để đây là phép chia hết thì 80x=-m+10

hay x=-m+10/80

NM
15 tháng 8 2021

a, Ta có \(Q\left(x\right)=x+1=0\Leftrightarrow x=-1\)

Vậy P(x) chia hết cho Q(x) khi P(x) có nghiệm là -1 hay

\(3\left(-1\right)^3+2\left(-1\right)^2-5\left(-1\right)+m=0\Leftrightarrow m=-4\)

b.. ta có \(Q\left(x\right)=x^2-3x+2=0\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}\)

Vậy P(x) chia hết cho Q(x) khi P(x) có nghiệm là 1  và 2 hay

\(\hept{\begin{cases}2+a+b+3=0\\2.2^3+a.2^2+b.2+3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a+b=-5\\4a+2b=-19\end{cases}\Leftrightarrow}\hept{\begin{cases}a=-\frac{9}{2}\\b=-\frac{1}{2}\end{cases}}\)

AH
Akai Haruma
Giáo viên
17 tháng 10 2018

Lời giải:

a)

\(2(x+3)-x^2-3x=0\)

\(\Leftrightarrow 2(x+3)-(x^2+3x)=0\)

\(\Leftrightarrow 2(x+3)-x(x+3)=0\Leftrightarrow (2-x)(x+3)=0\)

\(\Rightarrow \left[\begin{matrix} 2-x=0\\ x+3=0\end{matrix}\right.\Rightarrow\left[\begin{matrix} x=2\\ x=-3\end{matrix}\right.\)

b)

Theo định lý Bê-du về phép chia đa thức thì để đa thức đã cho chia hết cho $3x-1$ thì:

\(f(\frac{1}{3})=3.(\frac{1}{3})^3+2(\frac{1}{3})^2-7.\frac{1}{3}+a=0\)

\(\Leftrightarrow -2+a=0\Leftrightarrow a=2\)

c) Ta có:

\(2n^2+3n+3\vdots 2n-1\)

\(\Leftrightarrow 2n^2-n+4n+3\vdots 2n-1\)

\(\Leftrightarrow n(2n-1)+(4n-2)+5\vdots 2n-1\)

\(\Leftrightarrow n(2n-1)+2(2n-1)+5\vdots 2n-1\)

\(\Leftrightarrow 5\vdots 2n-1\Rightarrow 2n-1\in \text{Ư}(5)\)

\(\Rightarrow 2n-1\in\left\{\pm 1; \pm 5\right\}\Rightarrow n\in\left\{0; 1; 3; -2\right\}\)

Vậy.................

Định lý Bê-du là j ?

17 tháng 10 2018

Đặt phép chia ra ... ta được kết quả số dư là a - 30

Để đa thức chia hết cho 2x - 1 thì a- 30 = 0

=> a = 30

22 tháng 10 2019

2x^3+3x^2-x+a x^2+x-1 2x+1 2x^3+x^2 - - 2x^2-x+a 2x^2+x -2x+a -2x-1 - a+1

Để \(A\left(x\right)⋮B\left(x\right)\Leftrightarrow a+1=0\)

                              \(\Leftrightarrow a=-1\)

Vậy ...

2x^3+3x^2-x+a x^2+x-1 2x+1 2x^3+x^2 - - 2x^2-x+a 2x^2+x -2x+a -2x-1 - a+12x^3+3x^2-x+a x^2+x-1 2x+1 2x^3+x^2 - - 2x^2-x+a 2x^2+x -2x+a -2x-1 - a+1

Để \(A \left(\right. x \left.\right) B \left(\right. x \left.\right) \Leftrightarrow a + 1 = 0\)

                              \(\Leftrightarrow a = - 1\)

\(2x^3+x^2-4x+m⋮2x-1\)

\(\Leftrightarrow2x^3-x^2+2x^2-x-3x+\dfrac{3}{2}+m-\dfrac{3}{2}⋮2x-1\)

\(\Leftrightarrow m=\dfrac{3}{2}\)