K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
21 tháng 3 2022

Xét phương trình hoành độ giao điểm ta có 

\(x^2=\left(2m+1\right)x-2m\Leftrightarrow\left(x-2m\right)\left(x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=2m\end{cases}}\)

để p cắt d tại hai điểm phân biệt thì \(2m\ne1\Leftrightarrow m\ne\frac{1}{2}\).

ta có \(\hept{\begin{cases}x_1=1\Rightarrow y_1=x_1^2=1\\x_2=2m\Rightarrow y_2=x_2^2=4m^2\end{cases}}\)Vậy \(y_1+y_2-x_1x_2=1+4m^2-2m=1\Leftrightarrow4m^2-2m=0\Leftrightarrow\orbr{\begin{cases}m=0\\m=\frac{1}{2}\end{cases}}\)

Kết hợp điều kiện hai nghiệm phân biệt ta có m =0 

24 tháng 3 2022

Xét PT hoành độ giao điểm của (P) và (d)

x2=(2m+1)x-2m

⇔x2-(2m+1)x+2m=0

a=1; b=-2m-1; c=2m
a+b+c=a+(-2m-1)+2m=0 Nên PT (1) có 2 nghiệm

x1=1 và x2=2m

*) với x1=1 ⇒y1=1

*) với x2=2m ⇒y2=(2m)2=4m2

Thay x1, x2, y1, y2 vào y1+y2-x1x2=1, ta có:

1+4m2-2m=1

⇔4m2-2m=0⇔2m(2m-1)=0 ⇔m=0 và m=\(\dfrac{1}{2}\)

Vậy với m=0 và 1/2 thì ......

 

 

17 tháng 6 2018

có y=-x^2 =>(x1-x2)^2+(x2^2-x1^2)^2 =25

ok rồi sau đó tựbiến đổi nhé . mình lười lắm :))))

1 tháng 7 2020

b) Đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt 

\(\Leftrightarrow x^2+2x-m+1=0\)có 2 nghiệm phận biệt \(\Leftrightarrow\Delta'=m>0\)

theo đinh lý ziet : \(x_1+x_2=-2,x_1x_2=-m+1\)

có \(y_1=2x_1-m+1,y_2=2x^2-m+1=>y_1-y_2=2\left(x_1-x_2\right)\)

Nên : \(25=\left(x_1-x_2\right)^2+\left(y_1-y_2\right)^2=5\left(x_1-x_2\right)^2=>\left(x_1-x_2\right)=5\)

hay \(\left(x_1+x_2\right)^2-4x_1x_2=5=>4-4\left(-m+1\right)=5=>m=\frac{5}{4}\left(TM\right)\)

29 tháng 5 2018

đầu tiên viết pt hoành độ giao điểm

thứ hai giải denta của pt hoành độ giao điểm để tìm điều kiện của m

thứ ba giải viet rồi thế x1x2 vào pt mà đề cho

thứ tư vì y1 và y2 đều thuộc (d) nên  y1 = 2x1 - m + 1

                                                      y2 = 2x2 - m + 1 

thứ năm thay y1 và y2 vào pt mà đề cho rồi giải tìm m và m sẽ bằng 7 (thỏa mãn đk của denta)

27 tháng 2 2017

Hoành độ giao điểm của (p) và (d) là no của pt

x2 = mx +1

<=> x2 - mx -1 = 0

Xét \(\Delta\) = b2 - 4ac = m2 + 4 > 0

Theo hệ thức Vi-ét ta có

xA + xB = \(\dfrac{-b}{a}\) = m

xA xB = \(\dfrac{c}{a}\) = -1

Đặt A = (xA - 1)2 + (xB - 1)2 = (xA2 + xB2) - 2(xA + xB) + 2

A = (xA + xB)2 - 2xAxB - 2(xA + xB) + 2

A = m2 + 2 - 2m + 2 = (m2 - 2m + 1) + 3

A = (m -1)2 + 3 \(\ge\) 3

=> Amin = 3 <=> m = 1

Vậy m = 1