\(\le0\) nghiệm đúng ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
27 tháng 3 2019

\(f\left(x\right)=x^2-2mx+m^2-16\)

\(\left\{{}\begin{matrix}\Delta'>0\\x_1\le0< 1\le x_2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}16>0\\f\left(0\right)\le0\\f\left(1\right)\le0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m^2-16\le0\\m^2-2m-15\le0\end{matrix}\right.\)

\(\Rightarrow-3\le m\le4\)

NV
6 tháng 5 2019

Đặt \(f\left(x\right)=x^2-2mx+m^2-16\)

Bài toán tương đương tìm m để pt có 2 nghiệm pb thỏa mãn: \(x_1\le0< 1\le x_2\)

\(\Leftrightarrow\left\{{}\begin{matrix}f\left(0\right)\le0\\f\left(1\right)\le0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m^2-16\le0\\1-2m+m^2-16\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m^2-16\le0\\m^2-2m-15\le0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}-4\le m\le4\\-3\le m\le5\end{matrix}\right.\) \(\Rightarrow-3\le m\le4\)

NV
11 tháng 11 2019

a/ \(x^2-2x-3=-m\)

Đặt \(f\left(x\right)=x^2-2x-3\)

\(-\frac{b}{2a}=1\) ; \(f\left(1\right)=-4\) ; \(f\left(-1\right)=0\) ; \(f\left(3\right)=0\)

\(\Rightarrow\) Để pt có nghiệm trên khoảng đã cho thì \(-4\le-m\le0\Rightarrow0\le m\le4\)

b/ \(-x^2+2mx-m+1=0\)

\(\Delta'=m^2+m-1\ge0\Rightarrow\left[{}\begin{matrix}m\le\frac{-1-\sqrt{5}}{2}\\m\ge\frac{-1+\sqrt{5}}{2}\end{matrix}\right.\)

Để pt có 2 nghiệm đều âm

\(\Rightarrow\left\{{}\begin{matrix}x_1+x_2=2m< 0\\x_1x_2=m-1>0\end{matrix}\right.\) \(\Rightarrow\) không tồn tại m thỏa mãn

Vậy pt luôn có ít nhất 1 nghiệm \(x\ge0\) với \(\left[{}\begin{matrix}m\le\frac{-1-\sqrt{5}}{2}\\m\ge\frac{-1+\sqrt{5}}{2}\end{matrix}\right.\)

NV
11 tháng 11 2019

c/ \(f\left(x\right)=2x^2-x-1=m\)

Xét hàm \(f\left(x\right)=2x^2-x-1\) trên \(\left[-2;1\right]\)

\(-\frac{b}{2a}=\frac{1}{4}\) ; \(f\left(\frac{1}{4}\right)=-\frac{9}{8}\) ; \(f\left(-2\right)=9\); \(f\left(1\right)=0\)

\(\Rightarrow\) Để pt có 2 nghiệm pb thuộc đoạn đã cho thì \(-\frac{9}{8}< m\le0\)

d/ \(f\left(x\right)=x^2-2x+1=m\)

Xét \(f\left(x\right)\) trên \((0;2]\)

\(-\frac{b}{2a}=1\) ; \(f\left(1\right)=0\) ; \(f\left(0\right)=1\); \(f\left(2\right)=1\)

Để pt có nghiệm duy nhất trên khoảng đã cho \(\Leftrightarrow\left[{}\begin{matrix}m=0\\m=1\end{matrix}\right.\)

e/ ĐKXĐ: \(\left\{{}\begin{matrix}\left[{}\begin{matrix}x\ge-3\\x\le-4\end{matrix}\right.\\x\ge m\end{matrix}\right.\)

\(x^2+4x+3=x-m\)

\(\Leftrightarrow f\left(x\right)=x^2+3x+3=-m\)

Xét hàm \(f\left(x\right)\)

\(-\frac{b}{2a}=-\frac{3}{2}\) ; \(f\left(-\frac{3}{2}\right)=\frac{3}{4}\); \(f\left(-3\right)=3\); \(f\left(-4\right)=7\)

Để pt có 2 nghiệm thỏa mãn \(x\notin\left(-4;-3\right)\) thì \(\left[{}\begin{matrix}\frac{3}{4}< m\le3\\m\ge7\end{matrix}\right.\) (1)

Mặt khác \(x^2+3x+m+3=0\)

Để pt có 2 nghiệm thỏa mãn \(m\le x_1< x_2\) thì:

\(\left\{{}\begin{matrix}f\left(m\right)\ge0\\x_1+x_2>2m\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m^2+4m+3\ge0\\2m< -3\end{matrix}\right.\) \(\Rightarrow m\le-3\) (2)

Từ (1) và (2) suy ra ko tồn tại m thỏa mãn

9 tháng 3 2020

xét \(4m^2-5m-9=0\Leftrightarrow\left[{}\begin{matrix}m=\frac{9}{4}\\m=-1\end{matrix}\right.\)

Vs \(m=\frac{9}{4}\) bpt \(\Leftrightarrow0x\ge-\frac{27}{4}\) (t/m)

Vs m = -1 bpt \(\Leftrightarrow0x\ge16\) ( ko t/m)

Vậy m = 9/4

9 tháng 5 2017

f(x) là parabol quay lên --> phải có nghiệm 0, 1

hệ số a=1

=> \(\Delta>0\Rightarrow m^2-m+3>0\)

=> đúng với mọi m

f(x) phải có nghiệm nằm ngoài [0,1]

f(x) pa ra pol quay lện

f(0) <=0=m-2 =0 => m<= 2

f(1) <=0=0=> 1-2(m-1) +m-2 =0 => 1-m<=0 => m>=1

Kết luận

\(1\le m\le2\)

NV
29 tháng 4 2020

\(a=1>0;\) \(\Delta'=\left(m-1\right)^2-m+2=m^2-3m+3=\left(m-\frac{3}{2}\right)^2+\frac{3}{4}>0\) ;\(\forall m\)

Để BPT thỏa mãn với \(\forall x\in\left[0;1\right]\Leftrightarrow x_1\le0< 1\le x_2\)

Đặt \(f\left(x\right)=x^2-2\left(m-1\right)x+m-2\)

\(\Rightarrow\left\{{}\begin{matrix}f\left(0\right)\le0\\f\left(1\right)\le0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m-2\le0\\1-m\le0\end{matrix}\right.\)

\(\Rightarrow1\le m\le2\)

29 tháng 8 2017

Akai Haruma