Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Pt có 2 nghiệm trái dấu khi:
\(ac< 0\Leftrightarrow2\left(m+3\right)< 0\)
\(\Rightarrow m< -3\)
3:
x^2-2x+1-m^2<=0
=>(x-1)^2-m^2<=0
=>(x-1)^2<=m^2
=>-m<=x-1<=m
=>-m+1<=x<=m+1
mà x thuộc [-1;2]
nên -m+1>=-1 và m+1<=2
=>-m>=-2 và m<=1
=>m<=2 và m<=1
=>m<=1
Đặt x2−2x+m=tx2−2x+m=t, phương trình trở thành t2−2t+m=xt2−2t+m=x
Ta có hệ {x2−2x+m=tt2−2t+m=x{x2−2x+m=tt2−2t+m=x
⇒(x−t)(x+t−1)=0⇒(x−t)(x+t−1)=0
⇔[x=tx=1−t⇔[x=tx=1−t
⇔[x=x2−2x+mx=1−x2+2x−m⇔[x=x2−2x+mx=1−x2+2x−m
⇔[m=−x2+3xm=−x2+x+1⇔[m=−x2+3xm=−x2+x+1
Phương trình hoành độ giao điểm của y=−x2+x+1y=−x2+x+1 và y=−x2+3xy=−x2+3x:
−x2+x+1=−x2+3x−x2+x+1=−x2+3x
⇔x=12⇒y=54⇔x=12⇒y=54
Đồ thị hàm số y=−x2+3xy=−x2+3x và y=−x2+x+1y=−x2+x+1:
Lời giải:
Để pt có 2 nghiệm thì:
\(\left\{\begin{matrix} m\neq 0\\ \Delta'=(m+1)^2-m(m+5)=1-3m\geq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m\neq 0\\ m\leq\frac{1}{3}\end{matrix}\right.(1)\)
Áp dụng định lý Viet:
\(\left\{\begin{matrix} x_1+x_2=\frac{2(m+1)}{m}\\ x_1x_2=\frac{m+5}{m}\end{matrix}\right.\)
Để $x_1< 0< x_2$
$\Leftrightarrow x_1x_2< 0$
$\Leftrightarrow \frac{m+5}{m}< 0$
$\Leftrightarrow -5< m< 0(2)$
$x_1< x_2< 2$
\(\Leftrightarrow \left\{\begin{matrix} (x_1-2)(x_2-2)>0\\ x_1+x_2<4\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x_1x_2-2(x_1+x_2)+4>0\\ x_1+x_2<4\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} \frac{m+1}{m}>0\\ \frac{1-m}{m}< 0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} m>1\\ m< -1\end{matrix}\right.(3)\)
Từ $(1);(2);(3)$ suy ra $-5< m< -1$
Bài đã đăng bạn hạn chế không đăng lại gây spam box toán nhé.
Lời giải:
Để pt có 2 nghiệm thì:
\(\left\{\begin{matrix} m+1\neq 0\\ \Delta=(m-3)^2-4(m+1)^2=-(m+5)(3m-1)\geq 0\end{matrix}\right.\Leftrightarrow m\neq -1; -5\leq m\leq \frac{1}{3}\)
Pt có 2 nghiệm $x_1,x_2\geq -1$
\(\Leftrightarrow \left\{\begin{matrix} x_1+x_2\geq -2\\ (x_1+1)(x_2+1)\geq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x_1+x_2\geq -2\\ x_1x_2+(x_1+x_2)+1\geq 0\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} \frac{m-3}{m+1}\geq -2\\ \frac{m+1+m-3}{m+1}+1\geq 0\end{matrix}\right.\Leftrightarrow \frac{3m-1}{m+1}\geq 0\)
Vì $m\leq \frac{1}{3}$ nên $3m-1\leq 0$
$\Rightarrow m+1<0\Leftrightarrow m< -1$
Vậy $-5\leq m< -1$
\(\Leftrightarrow\left\{{}\begin{matrix}m+1\ne0\\\Delta'=m^2-\left(m+1\right)\left(m+6\right)>0\\x_1+x_2=\dfrac{2m}{m+1}>0\\x_1x_2=\dfrac{m+6}{m+1}>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\-7m-6>0\\\dfrac{2m}{m+1}>0\\\dfrac{m+6}{m+1}>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< -\dfrac{6}{7}\\\left[{}\begin{matrix}m>0\\m< -1\end{matrix}\right.\\\left[{}\begin{matrix}m>-1\\m< -6\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m< -6\)
Thay x=1 vào bpt:
\(1-\left(m+4\right)+m< 0\)
\(\Leftrightarrow-3< 0\left(lđ\right)\)
Thay x=5 vào bpt:
\(25-5\left(m+4\right)+m< 0\)
\(\Leftrightarrow-4m+5< 0\)
\(\Leftrightarrow m>\frac{5}{4}\)