K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
HT
0
CM
28 tháng 1 2019
Đặt
Suy ra
Ta có
Ta có bảng biến thiên
Từ bảng biến thiên ta suy ra
Khi đó bất phương trình trở thành:
Xét hàm số với
Ta có
Suy ra hàm số f(t) nghịch biến trên
Chọn C.
25 tháng 1 2016
x4+(1−2m)x2+m2−1(1)
Đặt t=x2(t\(\ge\) 0) ta được:
t2+(1-2m)t+m2-1(2)
a)Để PT vô nghiệm thì:
\(\Delta=\left(1-2m\right)^2-4.1.\left(m^2-1\right)<0\)
<=>1-4m+4m2-4m2+4<0
<=>5-4m<0
<=>m>5/4
CM
30 tháng 6 2017
Đáp án A
Phương pháp: Chia cả 2 vế cho 3x, đặt , tìm điều kiện của t.
Đưa về bất phương trình dạng
Cách giải :
Ta có
Đặt , khi đó phương trình trở thành
Ta có:
Vậy
CM
10 tháng 4 2019
Khi đó bất phương trình trở thành
Suy ra hàm số f(x) đồng biến trên
Do đó yêu cầu bài toán
Chọn B.
Đáp án B
Bất PT: x − x − 1 < m ⇔ x − 1 − x − 1 − m − 1 < 0
Đặt t = x − 1 t ≥ 0 ta được BPT t 2 − t − m − 1 < 0 1 ;
Như vậy bài toán trở thành tìm để BPT (1) có nghiệm t ≥ 0
⇒ Δ = 1 + 4 m − 1 = 4 m − 3 > 0 ⇔ m > 3 4 t 2 = 1 + 4 m − 3 2 > 0 ⇔ m > 3 4
Như vậy ta chọn đáp án B do 3 4 < 1