K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
21 tháng 11 2021

a.

Phương trình có 2 nghiệm trái dấu khi và chỉ khi:

\(ac< 0\Leftrightarrow1.\left(2m+1\right)< 0\)

\(\Leftrightarrow m< -\dfrac{1}{2}\)

b.

Phương trình có 2 nghiệm nằm cùng phía trục Oy \(\Leftrightarrow\) phương trình có 2 nghiệm cùng dấu

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=\left(m+1\right)^2-\left(2m+1\right)>0\\x_1x_2=2m+1>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\m>-\dfrac{1}{2}\end{matrix}\right.\)

12 tháng 3 2022

\(\Delta=\left(m+3\right)^2+4\left(m+1\right)\left(m-3\right)\)

\(=m^2+6m+9+4m^2-8m-12=5m^2-2m-3\)

\(=\left(m-1\right)\left(5m+3\right)\)

Để pt có 2 nghiệm pb khi \(\left(m-1\right)\left(5m+3\right)>0\)

 TH1 : \(\left\{{}\begin{matrix}5m+3>0\\m-1>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>-\dfrac{3}{5}\\m>1\end{matrix}\right.\)

TH2 : \(\left\{{}\begin{matrix}5m+3< 0\\m-1< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< -\dfrac{3}{5}\\m< 1\end{matrix}\right.\Leftrightarrow m< -\dfrac{3}{5}\)

12 tháng 3 2022

à bạn ơi, b^2-4ac vậy đáng lẽ phải là (m+3)^2 - 4(m+1)(m-3) chứ ạ??

Trường hợp 1: m=0

Phương trình sẽ là:

\(0x^2-2\cdot\left(0-1\right)x+0-3=0\)

=>2x-3=0

hay x=3/2

=>Phương trình có đúng một nghiệm dương, còn hai trường hợp còn lại thì ko đúng

Trường hợp 2: m<>0

a: 

Để phương trình có hai nghiệm trái dấu thì m(m-3)<0

hay 0<m<3

b:\(\Delta=\left(2m-2\right)^2-4m\left(m-3\right)\)

\(=4m^2-8m+4-4m^2+12m\)

=4m+4

Để phương trình có hai nghiệm dương phân biệt thì \(\left\{{}\begin{matrix}m>-1\\\dfrac{2\left(m-1\right)}{m}>0\\\dfrac{m-3}{m}>0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-1< m< 0\\m>3\end{matrix}\right.\)

22 tháng 12 2021

a: Để phương trình có hai nghiệm trái dấu thì m+2<0

hay m<-2

3 tháng 6 2018

 Phương trình bậc hai a x 2   +   b x   +   c   =   0   sẽ có hai nghiệm phân biệt trái dấu khi và chỉ khi ac < 0.

 Nếu m = 1 hoặc m = -1 thì phương trỉnh đã cho có nghiệm duy nhất (loại).

     ( m 2   -   1 ) ( m 2   +   m )   <   0   ⇔   ( m   +   1 ) 2 m ( m   -   1 ) < 0

    ⇔ 0 < m < 1

Với m=−1 thì PT f(x)=0 có nghiệm x=1 (chọn)

Với m≠−1 thì f(x) là đa thức bậc 2 ẩn x

f(x)=0 có nghiệm khi mà Δ′=m2−2m(m+1)≥0

⇔−m2−2m≥0⇔m(m+2)≤0

⇔−2≤m≤0

Tóm lại để f(x)=0 có nghiệm thì 

Câu 1:Ta có:

a) \(\left|x-3\right|=5\Leftrightarrow\left[{}\begin{matrix}x-3=5\\x-3=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-2\end{matrix}\right.\)

b) \(\left|2x+3\right|=2.\left|4-x\right|\)

+)Xét \(\left\{{}\begin{matrix}2x+3\ge0\\4-x\ge0\end{matrix}\right.\) \(\Leftrightarrow\dfrac{-3}{2}\le x\le4\)

Khi đó \(2x+3=2\left(4-x\right)\Leftrightarrow2x+3=8-2x\Leftrightarrow4x=5\Leftrightarrow x=\dfrac{5}{4}\left(tm\right)\)

+) Xét \(\left\{{}\begin{matrix}2x+3\ge0\\4-x\le0\end{matrix}\right.\) \(\Leftrightarrow x\ge4\)

Khi đó: \(2x+3=2\left(x-4\right)=2x-8\Leftrightarrow0x=-11\left(vl\right)\)

+) Xét \(\left\{{}\begin{matrix}2x+3\le0\\4-x\ge0\end{matrix}\right.\) \(\Leftrightarrow x\le\dfrac{-3}{2}\)

Khi đó: \(-\left(2x+3\right)=2.\left(4-x\right)\Leftrightarrow-2x-3=8-2x\left(vl\right)\)

+)Xét \(\left\{{}\begin{matrix}2x+3\le0\\4-x\le0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\le\dfrac{-3}{2}\\x\ge4\end{matrix}\right.\) \(\left(vl\right)\)

Vậy...

c) ĐKXĐ : \(3-x\ge0\Leftrightarrow x\le3\)

+)Xét \(x^{^2}-3x+1\ge0\)

\(\Leftrightarrow x^2-3x+1=3-x\Leftrightarrow x^2-2x-2=0\)

\(\Leftrightarrow x^2-2x+1=3\Leftrightarrow\left(x-1\right)^2=3\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=\sqrt{3}\\x-1=-\sqrt{3}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=1+\sqrt{3}\left(tm\right)\\x=1-\sqrt{3}\left(tm\right)\end{matrix}\right.\)

+)Xét \(x^{^2}-3x+1\le0\)

\(\Leftrightarrow-\left(x^2-3x+1\right)=3-x\)

\(\Leftrightarrow x^2-3x+1=x-3\Leftrightarrow x^2-4x+4=0\)

\(\Leftrightarrow\left(x-2\right)^2=0\Leftrightarrow x-2=0\Leftrightarrow x=2\left(tm\right)\)

Vậy...

Câu 2:

 Ta có:

Phương trình \(\left(x+3\right)\left(x^2-2x+m-1\right)=0\) có một nghiệm là \(x=-3\)

\(\Rightarrow\)Phương trình \(\left(x+3\right)\left(x^2-2x+m-1\right)=0\) có ba nghiệm phân biệt khi và chỉ khi \(x^2-2x+m-1=0\) có 2 nghiệm phân biệt và khác \(-3\)

Ta có:  \(x^2-2x+m-1=0\) có 2 nghiệm phân biệt khi và chỉ khi \(\text{△}>0\Leftrightarrow8-4m>0\Leftrightarrow m< 2\)

 Gọi \(x_1\) và \(x_2\) là 2 nghiệm của phương trình \(x^2-2x+m-1=0\).Theo hệ thức Vi-ét ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{-2}{1}=2\\x_1x_2=\dfrac{m-1}{1}=m-1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x_1=2-x_2\\\left(2-x_2\right).x_2=m-1\end{matrix}\right.\)

Nếu \(x_2\ne-3\) thì \(m-1\ne-15\Leftrightarrow m\ne-14\).

Do vai trò của  \(x_1\) và \(x_2\) là như nhau nên  \(x^2-2x+m-1=0\) có 2 nghiệm phân biệt và khác \(-3\) khi và chỉ khi: \(\left\{{}\begin{matrix}m< 2\\m\ne-14\end{matrix}\right.\)