\(\dfrac{x-m}{x-1}+\dfrac{x-2}{x+1}=2\) vô nghiệm

b,

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: ĐKXĐ: x<>1; x<>-1

\(\Leftrightarrow\left(x-m\right)\left(x+1\right)+\left(x-2\right)\left(x-1\right)=2\left(x^2-1\right)\)

\(\Leftrightarrow x^2+x-mx-m+x^2-3x+2-2x^2+2=0\)

\(\Leftrightarrow-2x-mx-m+4=0\)

=>x(-m-2)=m-4

Để PT VN thì -m-2=0

=>m=-2

b: ĐKXĐ: x<>1; x<>m

\(\Leftrightarrow\left(x+1\right)\left(x-m\right)=\left(x+2\right)\left(x-1\right)\)

=>x^2-xm+x-m=x^2+x-2

=>-xm+x-m=x+2

=>-xm-m=2

=>-xm=m+2

=>xm=-m-2

Để PT có nghiệm duy nhất thì m<>0

6 tháng 4 2017

1) b)

Phương trình trên tương đương

\(\dfrac{1}{\left(x+4\right)\left(x+5\right)}-\dfrac{1}{\left(x+3\right)\left(x+4\right)}=\dfrac{x^2-2x-33}{\left(x+3\right)\left(x+5\right)}\)

ĐKXĐ: \(x\ne-3;x\ne-4;x\ne-5\)

\(\dfrac{x+3-x-5}{\left(x+3\right)\left(x+4\right)\left(x+5\right)}=\dfrac{\left(x^2-2x-33\right)\left(x+4\right)}{\left(x+3\right)\left(x+4\right)\left(x+5\right)}\)

\(-2=x^3+4x^2-2x^2-8x-33x-132\)

\(x^3+2x^2-41x-130=0\)

\(x^3+5x^2-3x^2-15x-26x-130=0\)

\(x^2\left(x+5\right)-3x\left(x+5\right)-26\left(x+5\right)=0\)

\(\left(x^2-3x-26\right)\left(x+5\right)=0\)

\(\Rightarrow x=-5\)(Loại)

\(x^2-3x-26=0\)

Phân tích thành nhân tử cũng được nhưng nếu box lớp 10 thì chơi kiểu khác

\(\Delta=\left(-3\right)^2-4.1.\left(-26\right)=113\)

\(x_1=\dfrac{3-\sqrt{113}}{2}\)

\(x_2=\dfrac{3+\sqrt{113}}{2}\)

Phương trình có 2 nghiệm trên

6 tháng 4 2017

5) 0<a<b, ta có: a<b

<=> a.a<a.b

<=>a2<a.b

<=>\(a< \sqrt{ab}\)(1)

- BĐT Cauchy:

\(\dfrac{a+b}{2}\ge\sqrt{ab}\) khi \(a\ge0;b\ge0\)

\(\Leftrightarrow\sqrt{ab}\le\dfrac{a+b}{2}\)

Dấu = xảy ra khi a=b=0 mà 0<a<b

=> \(\sqrt{ab}< \dfrac{a+b}{2}\)(2)

- 0<a<b, ta có: a<b<=> a+b<b+b

\(\Leftrightarrow\)\(\dfrac{a+b}{2}< \dfrac{b+b}{2}\)

\(\Leftrightarrow\dfrac{a+b}{2}< b\left(3\right)\)

Từ (1), (2), (3), ta có đpcm

31 tháng 10 2018

a) đk \(\left\{{}\begin{matrix}2x+1\ge0\\x\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-\dfrac{1}{2}\\x\ne0\end{matrix}\right.\)

b) đk \(x+3>0\Leftrightarrow x>-3\)

c) \(\left\{{}\begin{matrix}x-1>0\\x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>1\\x\ge0\end{matrix}\right.\Leftrightarrow x>1\)

d) đk \(\left\{{}\begin{matrix}x^2-4\ne0\\x+1\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\x\ne\pm2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\x\ne2\end{matrix}\right.\)

4 tháng 2 2019


\[\begin{array}{l}
Q = {\left( {\frac{{\sqrt x }}{2} - \frac{1}{{2\sqrt x }}} \right)^2}\left( {\frac{{\sqrt x + 1}}{{\sqrt x - 1}} - \frac{{\sqrt x - 1}}{{\sqrt x + 1}}} \right)\\
Q = {\left( {\frac{{\sqrt x }}{2} - \frac{1}{{2\sqrt x }}} \right)^2}.\frac{{{{\left( {\sqrt x + 1} \right)}^2} - {{\left( {\sqrt x - 1} \right)}^2}}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}}\\
Q = {\left( {\frac{{\sqrt x }}{2} - \frac{1}{{2\sqrt x }}} \right)^2}.\frac{{4\sqrt x }}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}}\\
Q = \frac{{4\sqrt x {{\left( {\frac{{\sqrt x }}{2} - \frac{1}{{2\sqrt x }}} \right)}^2}}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}}\\
Q = \frac{{4\sqrt x {{\left( {\frac{{x - 1}}{{2\sqrt x }}} \right)}^2}}}{{x - 1}}\\
Q = \frac{{\sqrt x .\frac{{{{\left( {x - 1} \right)}^2}}}{x}}}{{x - 1}}\\
Q = \frac{{x\sqrt x - \sqrt x }}{x}
\end{array}\]

a: A(x)=0

=>2x-6=0

hay x=3

b: B(x)=0

=>3x-6=0

hay x=2

c: M(x)=0

\(\Rightarrow x^2-3x+2=0\)

=>x=2 hoặc x=1

d: P(x)=0

=>(x+6)(x-1)=0

=>x=-6 hoặc x=1

e: Q(x)=0

=>x(x+1)=0

=>x=0 hoặc x=-1