Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3n^2-13n+29=3n.\left(n-3\right)-4n+29\)
\(=3n.\left(n-3\right)-4.\left(n-3\right)+17=\left(3n-4\right).\left(n-3\right)+17\)
=> đề \(3n^2-13n+29⋮n-3\Rightarrow17⋮n-3\Rightarrow n-3\inƯ\left(17\right)=\left\{\pm1,\pm17\right\}\)
=> \(n\in\left\{4,2,-14,20\right\}\)
vì n là số nguyên dương => n\(\in\){4,2,20}
Phân chia x3-3x2+5x+m chia cho x-2 mình không thể giải trên này được minh se dua ket qua mình chia được rồi phần còn lại mình sẽ làm. Bạn tự làm phân chia nha.
x3-3x2+5x+m chia cho x-2 = x2-x+3 du m+6
=> m+6=0=>m=-6
Vậy m =-6
2 là nghiệm của đa thức B(x)=x-2
Để đa thức A(x)=x3-3x2+5x+m chia hết cho đa thức B(x)=x-2 thì 2 cũng là nghiệm của đa thức A(x)=x3-3x2+5x+m
\(\Rightarrow A\left(2\right)=8-12+10+m=0\)
\(\Leftrightarrow6+m=0\Leftrightarrow m=-6\)
Vậy m = -6 thì đa thức A(x)=x3-3x2+5x+m chia hết cho đa thức B(x)=x-2
thực hiện phép chia hai đa thức ta có:
(x3 - 3x2 + 5x + m ) : (x - 2) = x2 - x + 3 (dư m + 6)
Đa thức A(x) chia hết cho đa thức B(x) khi: m + 6 = 0 => m = - 6
Vậy m = - 6
b, D = 2x^2-4x+3
D= 2(x^2-2x+1) +1
D= 2(x-1)^2+1 luôn lớn hơn hoặc bằng 1
V ậy giá trị nhỏ nhất của D =1 khi x=1
Áp dụng định lý Bezout :
x3-3x2+5x+2a chia hết cho x-2
\(\Leftrightarrow2^3-3.2^2+5.2+2a=0\)
\(\Leftrightarrow6+2a=0\Leftrightarrow a=-3\)
Vậy a = -3 thì x3-3x2+5x+2a chia hết cho x-2
Áp dụng định lý Bezout :
2x3-x2+ax+b chia hết cho x2-1
\(\Leftrightarrow\orbr{\begin{cases}2.1^3-1^2+a.1+b=0\\2.\left(-1\right)^3-\left(-1\right)^2+a.\left(-1\right)+b=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}a+b=-1\\a-b=-3\end{cases}}\Leftrightarrow\hept{\begin{cases}a=-2\\b=1\end{cases}}\)