Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK: \(x\ne\frac{m}{2},x\ne\frac{1}{2}\)
Pt <=> (x+2)(2x-1)=(2x-m)(x+1)
<=> \(2x^2+3x-2=2x^2-mx+2x-m\)
<=> (m+1)x=2-m (1)
Phương trình ban đầu có nghiệm duy nhất khi và chỉ khi phương trình (1) có nghiệm duy nhất khác m/2 và khác 1/2
<=> \(\hept{\begin{cases}m+1\ne0\\\frac{\left(m+1\right)m}{2}\ne2-m\\\frac{\left(m+1\right).1}{2}\ne2-m\end{cases}}\)
Em làm tiếp nhé!
a) \(ĐKXĐ:\hept{\begin{cases}x\ne0\\x\ne\pm5\end{cases}}\)
\(M=\left(\frac{x}{x+5}-\frac{5}{5-x}+\frac{10x}{x^2-25}\right)\cdot\left(1-\frac{5}{x}\right)\)
\(\Leftrightarrow M=\frac{x^2-5x+5x+25+10x}{\left(x+5\right)\left(x-5\right)}\cdot\frac{x-5}{x}\)
\(\Leftrightarrow M=\frac{\left(x^2+10x+25\right)\left(x-5\right)}{\left(x+5\right)\left(x-5\right)x}\)
\(\Leftrightarrow M=\frac{\left(x+5\right)^2}{x\left(x+5\right)}\)
\(\Leftrightarrow M=\frac{x+5}{x}\)
b) Để \(M\inℤ\)
\(\Leftrightarrow x+5⋮x\)
\(\Leftrightarrow5⋮x\)
\(\Leftrightarrow x\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Mà \(x\ne\pm5\)
\(\Leftrightarrow x\in\left\{1;-1\right\}\)
Vậy để \(M\inℤ\Leftrightarrow x\in\left\{1;-1\right\}\)
\(M=\left(\frac{x}{x+5}-\frac{5}{5-x}+\frac{10x}{x^2-25}\right)\cdot\left(1-\frac{5}{x}\right)\left(x\ne\pm5;x\ne0\right)\)
\(\Leftrightarrow M=\left(\frac{x}{x+5}+\frac{5}{x-5}+\frac{10x}{\left(x-5\right)\left(x+5\right)}\right)\cdot\frac{x-5}{x}\)
\(\Leftrightarrow M=\left(\frac{x^2-5x}{\left(x-5\right)\left(x+5\right)}+\frac{5x+25}{\left(x-5\right)\left(x+5\right)}+\frac{10x}{\left(x-5\right)\left(x+5\right)}\right)\cdot\frac{x-5}{x}\)
\(\Leftrightarrow M=\frac{x^2-5x+5x+25+10x}{\left(x-5\right)\left(x+5\right)}\cdot\frac{x-5}{x}\)
\(\Leftrightarrow M=\frac{x^2+10x+25}{\left(x-5\right)\left(x+5\right)}\cdot\frac{x-5}{x}\)
\(\Leftrightarrow M=\frac{\left(x+5\right)^2\left(x-5\right)}{\left(x-5\right)\left(x+5\right)x}=\frac{x+5}{x}\)
b) M là số nguyên thì x+5 chia hết cho x
=> 5 chia hết cho x
x nguyên => x thuộc Ư (5)={-5;-1;1;5}
Vậy x={-5;-1;1;5} thì M là số nguyên
Câu 1a : tự kết luận nhé
\(2\left(x+3\right)=5x-4\Leftrightarrow2x+6=5x-4\Leftrightarrow-3x=-10\Leftrightarrow x=\frac{10}{3}\)
Câu 1b : \(\frac{1}{x-3}-\frac{2}{x+3}=\frac{5-2x}{x^2-9}\)ĐK : \(x\ne\pm3\)
\(\Leftrightarrow x+3-2x+6=5-2x\Leftrightarrow-x+9=5-2x\Leftrightarrow x=-4\)
c, \(\frac{x+1}{2}\ge\frac{2x-2}{3}\Leftrightarrow\frac{x+1}{2}-\frac{2x-2}{3}\ge0\)
\(\Leftrightarrow\frac{3x+3-4x+8}{6}\ge0\Rightarrow-x+11\ge0\Leftrightarrow x\le11\)vì 6 >= 0
1) 2(x + 3) = 5x - 4
<=> 2x + 6 = 5x - 4
<=> 3x = 10
<=> x = 10/3
Vậy x = 10/3 là nghiệm phương trình
b) ĐKXĐ : \(x\ne\pm3\)
\(\frac{1}{x-3}-\frac{2}{x+3}=\frac{5-2x}{x^2-9}\)
=> \(\frac{x+3-2\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{5-2x}{\left(x-3\right)\left(x+3\right)}\)
=> x + 3 - 2(x - 3) = 5 - 2x
<=> -x + 9 = 5 - 2x
<=> x = -4 (tm)
Vậy x = -4 là nghiệm phương trình
c) \(\frac{x+1}{2}\ge\frac{2x-2}{3}\)
<=> \(6.\frac{x+1}{2}\ge6.\frac{2x-2}{3}\)
<=> 3(x + 1) \(\ge\)2(2x - 2)
<=> 3x + 3 \(\ge\)4x - 4
<=> 7 \(\ge\)x
<=> x \(\le7\)
Vậy x \(\le\)7 là nghiệm của bất phương trình
Biểu diễn
-----------------------|-----------]|-/-/-/-/-/-/>
0 7
\(\Leftrightarrow\orbr{\begin{cases}x^2-2x+4=2x+1\\x^2-2x+4=-2x-1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x^2-4x+3=0\\x^2+5=0\left(loai\right)\end{cases}}\)
\(\Leftrightarrow x^2-3x-x+3=0\Leftrightarrow x.\left(x-3\right)-\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-1\right).\left(x-3\right)=0\Leftrightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}\)
ĐKXĐ : \(\hept{\begin{cases}x\ne-4\\x\ne-m\end{cases}}\)
a) Để pt có nghiệm x = 4 thì \(\frac{4-m}{8}=2\)=> 4 - m = 16 <=> m = -12 ( tm )
Vậy với m = -12 thì pt có nghiệm x = 4
b) (1) <=> \(\frac{x^2-m^2}{\left(x+4\right)\left(x+m\right)}+\frac{x^2-16}{\left(x+4\right)\left(x+m\right)}=\frac{2\left(x+4\right)\left(x+m\right)}{\left(x+4\right)\left(x+m\right)}\)
=> 2x2 - m2 - 16 = 2x2 + ( 2m + 8 )x + 8m
<=> \(x=\frac{\left(m+4\right)^2}{2\left(m+4\right)}=\frac{m+4}{2}\)
Vậy pt luôn có nghiệm duy nhất ∀ x ≠ -4 và x ≠ -m
(m-2) x -(m-1) =0
Để PT đã cho là phương trình bậc nhất một ẩn thì
=> m - 2 \(\ne\)0
=> m \(\ne\)2
Vậy m \(\ne\)2 thì (m-2) x - m +1 là phương trình bậc nhất một ẩn.
Câu này thực chất bạn chỉ cần đưa về dạng ax+b =0 rồi lập luận là được. Chúc bạn học tốt.
Để phương trình bậc nhất 1 ẩn thì \(m-2\ne0\)
\(\Rightarrow m\ne2\)
Vậy m\(\ne\)2 thì phương trình là phương trình bậc nhất 1 ẩn
a) \(x^3+x^2+2x-16\ge0\)
\(\Leftrightarrow x^3-2x^2+3x^2-6x+8x-16\ge0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+3x+8\right)\ge0\)
Mà \(x^2+3x+8>x^2+3x+2,25=\left(x+1,5\right)^2\ge0\)
Cho nên \(x-2\ge0\)
\(\Leftrightarrow x\ge2\)
a,x^3-2x^2+3x^2-6x+8x-16>=0
(x^2+3x+8)(x-2)>=0
x^2+3x+8>0
=> để lớn hơn hoac bang 0 thì x-2 phải>=0
=>x>=2
b,hình như là vô nghiệm ko chắc chắn lắm