K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 6

Ta có: \(mx+7=6\) (1) (m ≠ 0)

\(\Leftrightarrow mx=-1\)

\(\Leftrightarrow x=\frac{-1}{m}\)

Lại có: \(\frac{x}{2}+m=1\) (2)

\(\Leftrightarrow \frac{x}{2}=1-m\)

\(\Leftrightarrow x=2-2m\)

Để 2 phương trình (1) và (2) có nghiệm bằng nhau thì:

\(\frac{-1}{m}=2-2m\\\Leftrightarrow2m-2-\frac{1}{m}=0\\\Leftrightarrow 2m^2-2m-1=0(\text{vì }m\ne0)\\\Leftrightarrow \left[\begin{array}{} m=\frac{1+\sqrt3}{2}(tmdk)\\ m=\frac{1-\sqrt3}{2}(tmdk) \end{array} \right. \)

$\text{#}Toru$

11 tháng 6

Ta có pt(1): 

\(mx+7=6\left(m\ne0\right)\)

\(\Leftrightarrow mx=6-7=-1\)

\(\Leftrightarrow x=-\dfrac{1}{m}\)

Pt(2) \(\dfrac{x}{2}+m=1\)

\(\Leftrightarrow\dfrac{x}{2}=1-m\)

\(\Leftrightarrow x=2\left(1-m\right)=2-2m\)

Vì 2 phương trình có nghiệm bằng nhau nên:

\(-\dfrac{1}{m}=2-2m\)

\(\Leftrightarrow-1=m\left(2-2m\right)\)

\(\Leftrightarrow-1=2m-2m^2\)

\(\Leftrightarrow2m^2-2m-1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=\dfrac{1+\sqrt{3}}{2}\\m=\dfrac{1-\sqrt{3}}{2}\end{matrix}\right.\left(tm\right)\)

Vậy: ...

NV
14 tháng 4 2022

1.

\(a+b+c=0\) nên pt luôn có 2 nghiệm

\(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=m-1\end{matrix}\right.\)

\(A=\dfrac{2x_1x_2+3}{x_1^2+x_2^2+2x_1x_2+2}=\dfrac{2x_1x_2+3}{\left(x_1+x_2\right)^2+2}=\dfrac{2\left(m-1\right)+3}{m^2+2}=\dfrac{2m+1}{m^2+2}\)

\(A=\dfrac{m^2+2-\left(m^2-2m+1\right)}{m^2+2}=1-\dfrac{\left(m-1\right)^2}{m^2+2}\le1\)

Dấu "=" xảy ra khi \(m=1\)

2.

\(\Delta=m^2-4\left(m-2\right)=\left(m-2\right)^2+4>0;\forall m\) nên pt luôn có 2 nghiệm pb

Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=m-2\end{matrix}\right.\)

\(\dfrac{\left(x_1^2-2\right)\left(x_2^2-2\right)}{\left(x_1-1\right)\left(x_2-1\right)}=4\Rightarrow\dfrac{\left(x_1x_2\right)^2-2\left(x_1^2+x_2^2\right)+4}{x_1x_2-\left(x_1+x_2\right)+1}=4\)

\(\Rightarrow\dfrac{\left(x_1x_2\right)^2-2\left(x_1+x_2\right)^2+4x_1x_2+4}{x_1x_2-\left(x_1+x_2\right)+1}=4\)

\(\Rightarrow\dfrac{\left(m-2\right)^2-2m^2+4\left(m-2\right)+4}{m-2-m+1}=4\)

\(\Rightarrow-m^2=-4\Rightarrow m=\pm2\)

15 tháng 4 2022

undefined

a: Trường hợp 1: m=0

Pt sẽ là \(6\cdot\left(-2\right)x+4\cdot0-7=0\)

=>-12x-7=0

=>x=-7/12(nhận)

Trường hợp 2: m<>0

\(\Delta=\left(6m-12\right)^2-4m\left(4m-7\right)\)

\(=36m^2-144m+144-16m^2+28m\)

\(=20m^2-116m+144\)

Để phương trình có nghiệm thì \(20m^2-116m+144>=0\)

Đặt \(20m^2-116m+144=0\)

\(\Delta=\left(-116\right)^2-4\cdot20\cdot144=1936\)

Do đó: Phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}m_1=4\\m_2=\dfrac{9}{5}\end{matrix}\right.\)

Do đó: Bất phương trình xảy ra khi m<=9/5 hoặc m>=4

Vậy: m<=9/5 hoặc m>=4

b: Trường hợp 1: m=0

Pt sẽ là 1=0(vô lý)

Trường hợp 2: m=1

Pt sẽ là 2x+1=0

hay x=-1/2(nhận)

Trường hợp 3: m khác 0 và m khác 1

\(\Delta=\left(2m\right)^2-4\left(m^2-m\right)=4m^2-4m^2+4m=4m\)

Để phương trình có nghiệm thì 4m>0

hay m>0

Vậy: m>0

1: Khi m=3 thì hệ phương trình (1) trở thành:

\(\left\{{}\begin{matrix}3x-2y=-1\\2x+3y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{13}\\y=\dfrac{5}{13}\end{matrix}\right.\)

2: Khi x=-1/2 và y=2/3 vào hệ phương trình, ta được:

\(\left\{{}\begin{matrix}2\cdot\dfrac{-1}{2}+3\cdot\dfrac{2}{3}=1\\-\dfrac{1}{2}m-\dfrac{4}{3}=-1\end{matrix}\right.\Leftrightarrow m\cdot\dfrac{-1}{2}=\dfrac{1}{3}\)

hay m=-2/3

b: Thay x=-5 vào pt, ta được:

\(m+25+65=0\)

hay m=-90

Theo đề, ta có: \(x_1+x_2=13\)

nên \(x_2=18\)

c: Thay x=-3 vào pt, ta được:

\(18+3\left(m+4\right)+m=0\)

=>4m+30=0

hay m=-15/2

Theo đề, ta có: \(x_1\cdot x_2=-\dfrac{m}{2}=\dfrac{15}{4}\)

hay \(x_2=-1.25\)

NV
15 tháng 1

\(\Delta=\left(5m-2\right)^2-4m\left(2m+10\right)=17m^2-60m+4\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{5m-2}{m}\\x_1x_2=\dfrac{2m+10}{m}\end{matrix}\right.\)

a.

Phương trình có 2 nghiệm đối nhau

\(\Rightarrow\left\{{}\begin{matrix}\Delta>0\\m\ne0\\x_1+x_2=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}17m^2-60m+4>0\left(1\right)\\m\ne0\\\dfrac{5m-2}{m}=0\end{matrix}\right.\)

Từ \(\dfrac{5m-2}{m}=0\Rightarrow5m-2=0\Rightarrow m=\dfrac{2}{5}\)

Thế vào (1) kiểm tra thấy ko thỏa mãn.

Vậy ko tồn tại m thỏa mãn yêu cầu

b.

Pt có 2 nghiệm là nghịch đảo của nhau khi:

\(\left\{{}\begin{matrix}\Delta>0\\m\ne0\\x_1x_2=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}17m^2-60m+4>0\\m\ne0\\\dfrac{2m+10}{m}=1\end{matrix}\right.\)

Từ \(\dfrac{2m+10}{m}=1\Rightarrow2m+10=m\)

\(\Rightarrow m=10\)

Thế vào \(17m^2-60m+4>0\) kiểm tra thấy thỏa mãn

Vậy \(m=10\)

a: Ta có: \(\text{Δ}=\left(-2m\right)^2-4\cdot1\cdot\left(m+6\right)\)

\(=4m^2-4m-24\)

\(=4\left(m^2-m-6\right)\)

Để phương trình có hai nghiệm phân biệt thì Δ>0

\(\Leftrightarrow m^2-m-6>0\)

\(\Leftrightarrow\left(m-3\right)\left(m+2\right)>0\)

\(\Leftrightarrow\left[{}\begin{matrix}m>3\\m< -2\end{matrix}\right.\)

b: Ta có: \(\text{Δ}=\left(-2m\right)^2-4\cdot m\cdot\left(m+3\right)\)

\(=4m^2-4m^2-12m\)

=-12m

Để phương trình vô nghiệm thì Δ<0

hay m>0

c: Ta có: \(\text{Δ}=\left(2m-3\right)^2-4\left(m-2\right)\left(m+1\right)\)

\(=4m^2-12m+9-4\left(m^2-m-2\right)\)

\(=4m^2-12m+9-4m^2+4m+8\)

\(=-8m+17\)

Để phương trình có nghiệm kép thì Δ=0

hay \(m=\dfrac{17}{8}\)

26 tháng 11 2023

a: Khi m=3 thì hệ phương trình sẽ là:

\(\left\{{}\begin{matrix}3x-y=2\\2x+3y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}9x-3y=6\\2x+3y=5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}11x=11\\3x-y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3x-2=3-2=1\end{matrix}\right.\)

b: \(\left\{{}\begin{matrix}mx-y=2\\2x+my=5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=mx-2\\2x+m\left(mx-2\right)=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=mx-2\\x\left(m^2+2\right)=5+2m\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=mx-2\\x=\dfrac{2m+5}{m^2+2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{2m^2+5m}{m^2+2}-2=\dfrac{2m^2+5m-2m^2-4}{m^2+2}=\dfrac{5m-4}{m^2+2}\\x=\dfrac{2m+5}{m^2+2}\end{matrix}\right.\)

\(x+y=1-\dfrac{m^2}{m^2+2}\)

=>\(\dfrac{5m-4+2m+5}{m^2+2}=\dfrac{m^2+2-m^2}{m^2+2}=\dfrac{2}{m^2+2}\)

=>7m+1=2

=>7m=1

=>\(m=\dfrac{1}{7}\)