K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2022

refer

10 tháng 5 2022

Hai đồ thị \(y=\left(3m+2\right)x+5\) và \(y=-x-1\) cắt nhau

\(\Rightarrow3m+2\ne-1\Rightarrow m\ne-1\)

Khi đó ta có giao điểm 2 đồ thị là \(A=\left(x;y\right)=\left(x;-x-1\right)\)

\(P=y^2+2x-2019=\left(-x-1\right)^2+2x-2019=x^2+4x-2018\\ =\left(x+2\right)^2-2022\ge-2022\)

Dấu = xảy ra \(\Leftrightarrow x+2=0\Leftrightarrow x=-2\Leftrightarrow y=1\)

\(\Rightarrow1=\left(3m+2\right)\left(-2\right)+5\Rightarrow-6m=0\Rightarrow m=0\left(TM\right)\)

a: PTHĐGĐ là;

-1/4x^2-mx+m+2=0

=>1/4x^2+mx-m-2=0

=>x^2+4mx-4m-8=0

\(\text{Δ}=\left(4m\right)^2-4\left(-4m-8\right)\)

\(=16m^2+16m+32\)

\(=16m^2+2\cdot4m\cdot2+4+28=\left(4m+2\right)^2+28>0\)

=>Phương trình luôn có hai nghiệm phân biệt

b: \(A=x_1\cdot x_2\left(x_1+x_2\right)\)

\(=4m\left(4m+8\right)\)

\(=\left(16m^2+32m+16-16\right)\)

\(=\left(4m+4\right)^2-16>=-16\)

Dấu = xảy ra khi m=-1

23 tháng 2 2023

 

\

PTHĐGĐ là:

x^2-(m+2)x+2m=0

Δ=(m+2)^2-4*2m

=m^2+4m+4-8m

=m^2-4m+4

=(m-2)^2

Để PT có hai nghiệm phân biệt thì Δ>0

=>m-2<>0

=>m<>2

P=y1+y2-x1x2

=x1^2+x2^2-x1x2

=(x1+x2)^2-3x1x2

=(m+2)^2-3*2m

=m^2+4m+4-6m

=m^2-2m+1+3

=(m-1)^2+3>=3

Dấu = xảy ra khi m=1