Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giao của d và d1 là điểm có hoành độ thỏa mãn :
2x + 3 = ( m + 1) x + 5
2x - ( m + 1) x = 5 - 3
x ( 2 - m - 1) = 2
( 1-m) x = 2
x = 2 : ( 1-m) đk m # 1
Để d và d1 cắt nhau về bên trái trục tung thì \(\dfrac{2}{1-m}\) < 0
1- m < 0 => m > 1
Phương trình hoành độ giao điểm x 2 = (m – 2)x + 3m ↔ x 2 − (m – 2)x − 3m = 0 (*)
Đường thẳng d cắt (P) tại hai điểm phân biệt nằm hai phía trục tung
↔ Phương trình (*) có hai nghiệm trái dấu
↔ ac < 0 ↔ −3m < 0 ↔ m > 0
Đáp án: D
PT hoành độ giao điểm: \(x-2=\left(m-2\right)x+1\)
\(\Leftrightarrow\left(m-3\right)x=-3\Leftrightarrow x=-\dfrac{3}{m-3}\)
Vì giao nhau bên trái trục tung nên \(x< 0\Leftrightarrow m-3>0\left(-3< 0\right)\Leftrightarrow m>3\)
Vậy \(m>3\) thỏa yêu cầu đề
a: Thay x=0 và y=11 vào (d), ta được:
-2m+1=11
hay m=-5
\(PTHDGD:2x+m=x-2m+3\)
Mà 2 đt cắt tại 1 điểm trên trục tung nên \(x=0\)
\(\Leftrightarrow m=3-2m\\ \Leftrightarrow m=1\)
Để hai đường thẳng này cắt nhau thì \(m+1\ne2\)
=>\(m\ne1\)
Phương trình hoành độ giao điểm là:
(m+1)x+5=2x+3
=>(m+1)x-2x=3-5
=>(m-1)x=-2
=>\(x=-\dfrac{2}{m-1}\)
Để hai đường thẳng y=2x+3 và y=(m+1)x+5 cắt nhau tại A nằm về phía bên trái so với trục tung thì \(-\dfrac{2}{m-1}< 0\)
=>m-1>0
=>m>1