Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(b^2=a.c\)\(=>\frac{a}{b}=\frac{b}{c}\)
Đặt : \(\frac{a}{b}=\frac{b}{c}=k\)
Ta có : \(a=b.k\)
\(b=c.k\)
\(=>\)\(\frac{a}{c}=\frac{b.k}{c}=\frac{c.k+k}{c}=k^2\left(1\right)\)
\(\left(\frac{a+2012b}{b+2012c}\right)^2=\left(\frac{bk+2012b}{ck+2012c}\right)^2=\left(\frac{b\left(k+2012\right)}{c\left(k+2012\right)}\right)^2=\left(\frac{b}{c}\right)^2=k^2\left(2\right)\)
Từ (1) và (2) \(=>\frac{a}{c}=\left(\frac{a+2012b}{b+2012c}\right)^2\left(đpcm\right)\)
Hok tốt~
a)
1/4:(31/16-2+1/2)+1
=1/4:(-1/16+1/2)+1
=(1/4:7/16)+1
=4/7+1
=11/7
b)
43/6:(-7/6)+65/6.(-7/6)+1/2
=-43/7+-455/36+1/2
=-4607/252
c)
1/4+11/2.5/2+-2
=23/4.5/2+-2
=115/8+-2
=99/8
d) bài 4 rất dễ bạn tự làm đi nhé
tick cho mk đi nhanh lên đó nhiên
=
\(\frac{3}{4}+\frac{1}{4}:\left(-\frac{2}{3}\right)-\left(-5\right)\)
\(=\frac{3}{4}+\frac{1}{4}.\left(-\frac{3}{2}\right)+5\)
\(=\frac{3}{4}-\frac{3}{8}+5\)
\(=\frac{3}{8}+5=\frac{43}{8}\)
\(12.\left(\frac{2}{5}-\frac{5}{6}\right)^2=12.\left(-\frac{13}{30}\right)^2=12.\frac{169}{900}=\frac{169}{75}\)
\(\left(-2\right)^2+\sqrt{36}-\sqrt{9}+\sqrt{25}=4+6-3+5=12\)
\(\left(9\frac{3}{4}:3.4.2\frac{7}{34}\right):\left(-1\frac{9}{16}\right)=\left(\frac{39}{4}:3.4.\frac{75}{34}\right):\left(-\frac{25}{16}\right)=\frac{975}{34}.\left(-\frac{16}{25}\right)=-\frac{312}{17}\)
\(\frac{\sqrt{3^2}+\sqrt{39^2}}{\sqrt{91^2}-\sqrt{\left(-7\right)^2}}=\frac{3+39}{91-7}=\frac{42}{84}=\frac{1}{2}\)
Lời giải:
$b.b=ac\Rightarrow \frac{b}{c}=\frac{a}{b}$.
Đặt $\frac{b}{c}=\frac{a}{b}=k\Rightarrow b=ck; a=bk$.
Khi đó:
$\frac{a}{c}=\frac{bk}{c}=\frac{ck.k}{c}=k^2(1)$
Và:
$\frac{(a+2011b)^2}{(b+2011c)^2}=\frac{(bk+2011b)^2}{(ck+2011c)^2}$
$=\frac{b^2(k+2011)^2}{c^2(k+2011)^2}=\frac{b^2}{c^2}=\frac{(ck)^2}{c^2}=k^2(2)$
Từ $(1);(2)$ ta có đpcm.
a)\(\left(\frac{5}{2}-\frac{4}{3}\right).\frac{6}{7}+\left(-\frac{3}{2}\right)^5:\left(-\frac{3}{2}\right)^3=\left(\frac{15}{6}-\frac{8}{6}\right).\frac{6}{7}+\left(-\frac{3}{2}\right)^2=\frac{7}{6}.\frac{6}{7}+\frac{9}{4}=\frac{9}{4}\)