K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 11 2017

Bạn Hùng nhầm công thức

Bạn Hoa giải đúng

4 tháng 12 2017

bạn Hoa giải đúng . Bạn Hùng nhầm công thức

3 tháng 11 2017

1) Phân số đầu nhân 2.

_ Phân số thứ 2 nhân 3, p/s thứ 3 giữ nguyên.

_ Lấy phân số đầu + p/s thứ 2 - p/s thứ 3.

_ Dựa vào dãy tỉ số bằng nhau tìm x, y, z.

2) \(x-y-z=0\Rightarrow x=y+z\)

Khi đó thay vào B được:

\(B=\left(1-\dfrac{z}{y+z}\right)\left(1-\dfrac{y+z}{y}\right)\left(1+\dfrac{y}{z}\right)\)

\(=\dfrac{y}{y+z}.\dfrac{z}{y}.\dfrac{y+z}{z}\)

\(=1\)

Vậy B = 1.

3 tháng 11 2017

mơn bạn :)

19 tháng 11 2017

tự làm đi..... sao ngu v??

2 tháng 1 2018

Đề sai hay sao á, k rút gọn được.

fix: \(a\left(y+z\right)=b\left(z+x\right)=c\left(x+y\right)\)

Cần chứng minh: \(\dfrac{y-z}{a\left(b-c\right)}=\dfrac{z-x}{b\left(c-a\right)}=\dfrac{x-y}{c\left(a-b\right)}\)

Lời giải:

Từ \(a\left(y+z\right)=b\left(z+x\right)=c\left(x+y\right)\)

\(\Rightarrow\dfrac{a\left(y+z\right)}{abc}=\dfrac{b\left(z+x\right)}{abc}=\dfrac{c\left(x+y\right)}{abc}\)

\(\Rightarrow\dfrac{y+z}{bc}=\dfrac{z+x}{ac}=\dfrac{x+y}{ab}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{y+z}{bc}=\dfrac{z+x}{ac}=\dfrac{x+y}{ab}=\dfrac{x+y-z-x}{ab-ac}=\dfrac{y+z-x-y}{bc-ab}=\dfrac{z+x-y-z}{ac-ab}=\dfrac{y-z}{a\left(b-c\right)}=\dfrac{z-x}{b\left(c-a\right)}=\dfrac{x-y}{a\left(c-b\right)}\left(đpcm\right)\)

16 tháng 11 2016

Vì x tỉ lệ thuận với y theo hệ số tỉ lệ a nên x = y.a (1)

y tỉ lệ thuận với z theo hệ số tỉ lệ b nên y = z.b (2)

z tỉ lệ thuận với t theo hệ số tỉ lệ c nên z = t.c (3)

Từ (1); (2) và (3) => x = t.c.b.a

=> \(t=\frac{x}{c.b.a}=x.\frac{1}{c.b.a}\)

Vậy t tỉ lệ thuận với x và hệ số tỉ lệ là \(\frac{1}{c.b.a}\)

2 tháng 5 2018

Ta có :

\(\dfrac{x+y-z}{z}=\dfrac{y+z-x}{x}=\dfrac{z+x-y}{y}\\ \Leftrightarrow\dfrac{x+y+z}{z}=\dfrac{x+y+z}{x}=\dfrac{x+y+z}{y}\left(cùngcộngthêm2\right)\)

TH1: \(x+y+z\ne0\)

\(\Rightarrow x=y=z\)

\(\Rightarrow P=\left(1+1\right)\left(1+1\right)\left(1+1\right)\\ =2\cdot2\cdot2=8\)

TH2: \(x+y+z=0\Rightarrow\left\{{}\begin{matrix}x=-\left(y+z\right)\\y=-\left(x+z\right)\\z=-\left(y+x\right)\end{matrix}\right.\)(*)

\(\Rightarrow P=\left(1+\dfrac{-\left(y+z\right)}{y}\right)\left(1+\dfrac{-\left(z+x\right)}{z}\right)\left(1+\dfrac{-\left(x+y\right)}{z}\right)\\ =\left(1-1-\dfrac{z}{y}\right)\left(1-1-\dfrac{x}{z}\right)\left(1-1-\dfrac{y}{z}\right)\\ =\left(-\dfrac{z}{y}\right)\left(-\dfrac{x}{z}\right)\left(-\dfrac{y}{z}\right)\\ =-1\)

Vậy P=8 hoặc P=-1

9 tháng 11 2017

1+1=3

1234567

29 tháng 4 2017

Ta có: x-y-z=0 <=> x=y+z Thay vào A ta có:

A=\(\left(1-\dfrac{z}{y+z}\right)\left(1-\dfrac{y+z}{y}\right)\left(1+\dfrac{y}{z}\right)\)

=\(\dfrac{y}{y+z}\cdot\left(-\dfrac{z}{y}\right)\cdot\dfrac{y+z}{z}=\dfrac{y}{z}\cdot\left(-\dfrac{z}{y}\right)=-1\)

Vậy A=-1

29 tháng 4 2017

theo bài ra táo:

\(A=\left(1-\dfrac{z}{x}\right)\left(1-\dfrac{x}{y}\right)\left(1+\dfrac{y}{z}\right)\\ \Rightarrow A=\dfrac{x-z}{x}.\dfrac{y-x}{y}.\dfrac{z+y}{z}\left(1\right)\)

ta lại có:

\(x-y-z=0\\ \Rightarrow\left\{{}\begin{matrix}x-z=y\left(2\right)\\y-x=-z\left(3\right)\\z+y=x\left(4\right)\end{matrix}\right.\)

thay 2;3;4 vào 1 ta có:

\(A=\dfrac{y}{x}.\dfrac{-z}{y}.\dfrac{x}{z}=-1\)

vậy A = -1