K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 11 2023

a: \(y=\left(5x-10\right)^4\)

=>\(y'=4\cdot\left(5x-10\right)'\cdot\left(5x-10\right)^3\)

\(=4\cdot5\cdot\left(5x-10\right)^3=20\left(5x-10\right)^3\)

Đặt y'>0

=>\(20\left(5x-10\right)^3>0\)

=>\(\left(5x-10\right)^3>0\)

=>5x-10>0

=>x>2

Đặt y'<0

=>\(20\left(5x-10\right)^3< 0\)

=>\(\left(5x-10\right)^3< 0\)

=>5x-10<0

=>x<2

Vậy: hàm số đồng biến trên \(\left(2;+\infty\right)\)

Hàm số nghịch biến trên \(\left(-\infty;2\right)\)

c: \(y=\left(x^3-1\right)^3\)

=>\(y'=3\left(x^3-1\right)'\cdot\left(x^3-1\right)^2\)

\(=9x^2\left(x^3-1\right)^2>=0\forall x\)

=>Hàm số luôn đồng biến trên R

d: \(y=\left(x^2-1\right)\left(x+2\right)\)

=>\(y'=\left(x^2-1\right)'\left(x+2\right)+\left(x^2-1\right)\left(x+2\right)'\)

\(=2x\left(x+2\right)+x^2-1\)

\(=2x^2+4x+x^2-1=3x^2+4x-1\)

Đặt y'>0

=>\(3x^2+4x-1>0\)

=>\(\left[{}\begin{matrix}x< \dfrac{-2-\sqrt{7}}{3}\\x>\dfrac{-2+\sqrt{7}}{3}\end{matrix}\right.\)

Đặt y'<0

=>\(3x^2+4x-1< 0\)

=>\(\dfrac{-2-\sqrt{7}}{3}< x< \dfrac{-2+\sqrt{7}}{3}\)

Vậy: Hàm số đồng biến trên các khoảng \(\left(-\infty;\dfrac{-2-\sqrt{7}}{3}\right);\left(\dfrac{-2+\sqrt{7}}{3};+\infty\right)\)

Hàm số nghịch biến trên khoảng \(\left(\dfrac{-2-\sqrt{7}}{3};\dfrac{-2+\sqrt{7}}{3}\right)\)

b: \(y=\left(-x-1\right)\left(x+2\right)^4\)

=>\(y'=\left(-x-1\right)'\left(x+2\right)^4+\left(-x-1\right)\left[\left(x+2\right)^4\right]'\)

\(=-\left(x+2\right)^4+\left(-x-1\right)\cdot4\left(x+2\right)'\left(x+2\right)^3\)

\(=-\left(x+2\right)^4+4\left(x+2\right)^3\cdot\left(-x-1\right)\)

\(=-\left(x+2\right)^3\left[\left(x+2\right)+4\left(x+1\right)\right]\)

\(=-\left(x+2\right)^2\cdot\left(x+2\right)\left(5x+6\right)\)

Đặt y'<0

=>\(-\left(x+2\right)^2\left(x+2\right)\left(5x+6\right)< 0\)

=>(x+2)(5x+6)>0

TH1: \(\left\{{}\begin{matrix}x+2>0\\5x+6>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>-2\\x>-\dfrac{6}{5}\end{matrix}\right.\Leftrightarrow x>-\dfrac{6}{5}\)

TH2: \(\left\{{}\begin{matrix}x+2< 0\\5x+6< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x< -2\\x< -\dfrac{6}{5}\end{matrix}\right.\Leftrightarrow x< -2\)

Đặt y'>0

=>(x+2)(5x+6)<0

TH1: \(\left\{{}\begin{matrix}x+2>0\\5x+6< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>-2\\x< -\dfrac{6}{5}\end{matrix}\right.\Leftrightarrow-2< x< -\dfrac{6}{5}\)

TH2: \(\left\{{}\begin{matrix}x+2< 0\\5x+6>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x< -2\\x>-\dfrac{6}{5}\end{matrix}\right.\Leftrightarrow x\in\varnothing\)

Vậy: HSĐB trên các khoảng \(\left(-\infty;-2\right);\left(-\dfrac{6}{5};+\infty\right)\)

HSNB trên khoảng \(\left(-2;-\dfrac{6}{5}\right)\)

13 tháng 11 2023

a: \(y=\left(x^2-1\right)^2\)

=>\(y'=2\left(x^2-1\right)'\left(x^2-1\right)\)

\(=4x\left(x^2-1\right)\)

Đặt y'>0

=>\(x\left(x^2-1\right)>0\)

TH1: \(\left\{{}\begin{matrix}x>0\\x^2-1>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>0\\x^2>1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>0\\\left[{}\begin{matrix}x>1\\x< -1\end{matrix}\right.\end{matrix}\right.\)

=>\(x>1\)

TH2: \(\left\{{}\begin{matrix}x< 0\\x^2-1< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x< 0\\-1< x< 1\end{matrix}\right.\Leftrightarrow-1< x< 0\)

Đặt y'<0

=>\(x\left(x^2-1\right)< 0\)

TH1: \(\left\{{}\begin{matrix}x>0\\x^2-1< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>0\\x^2< 1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>0\\-1< x< 1\end{matrix}\right.\)

=>0<x<1

TH2: \(\left\{{}\begin{matrix}x< 0\\x^2-1>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x< 0\\x^2>1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< 0\\\left[{}\begin{matrix}x>1\\x< -1\end{matrix}\right.\end{matrix}\right.\)

=>x<-1

Vậy: Hàm số đồng biến trên các khoảng \(\left(1;+\infty\right);\left(-1;0\right)\)

Hàm số nghịch biến trên các khoảng (0;1) và \(\left(-\infty;-1\right)\)

b: \(y=\left(3x+4\right)^3\)

=>\(y'=3\left(3x+4\right)'\left(3x+4\right)^2\)

\(\Leftrightarrow y'=9\left(3x+4\right)^2>=0\forall x\)

=>Hàm số luôn đồng biến trên R

c: \(y=\left(x+3\right)^2\left(x-1\right)\)

=>\(y=\left(x^2+6x+9\right)\left(x-1\right)\)

=>\(y'=\left(x^2+6x+9\right)'\left(x-1\right)+\left(x^2+6x+9\right)\left(x-1\right)'\)

=>\(y'=\left(2x+6\right)\left(x-1\right)+x^2+6x+9\)

=>\(y'=2x^2-2x+6x-6+x^2+6x+9\)

=>\(y'=3x^2-2x+3\)

\(\Leftrightarrow y'=3\left(x^2-\dfrac{2}{3}x+1\right)\)

=>\(y'=3\left(x^2-2\cdot x\cdot\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{8}{9}\right)\)

=>\(y'=3\left(x-\dfrac{1}{3}\right)^2+\dfrac{8}{3}>=\dfrac{8}{3}>0\forall x\)

=>Hàm số luôn đồng biến trên R

d: \(y=\left(2x+2\right)\left(x^3-1\right)\)

=>\(y'=\left(2x+2\right)'\left(x^3-1\right)+\left(2x+2\right)\left(x^3-1\right)'\)

\(=2\left(x^3-1\right)+3x^2\left(2x+2\right)\)

\(=2x^3-2+6x^3+6x^2\)

\(=8x^3+6x^2-2\)

Đặt y'>0

=>\(8x^3+6x^2-2>0\)

=>\(x>0,46\)

Đặt y'<0

=>\(8x^3+6x^2-2< 0\)

=>\(x< 0,46\)

Vậy: Hàm số đồng biến trên khoảng tầm \(\left(0,46;+\infty\right)\)

Hàm số nghịch biến trên khoảng tầm \(\left(-\infty;0,46\right)\)

13 tháng 11 2023

a: \(y=\left(x+2\right)^2=x^2+4x+4\)

=>\(y'=2x+4\)

Đặt y'>0

=>2x+4>0

=>x>-2

Đặt y'<0

=>2x+4<0

=>x<-2

Vậy: Hàm số đồng biến trên \(\left(-2;+\infty\right)\) và nghịch biến trên \(\left(-\infty;-2\right)\)

b: \(y=\left(x^2-1\right)\left(x+2\right)\)

=>\(y'=\left(x^2-1\right)'\cdot\left(x+2\right)+\left(x^2-1\right)\left(x+2\right)'\)

\(=2x\left(x+2\right)+x^2-1=2x^2+4x+x^2-1=3x^2+4x-1\)

Đặt y'>0

=>\(3x^2+4x-1>0\)

=>\(\left[{}\begin{matrix}x>\dfrac{-2+\sqrt{7}}{3}\\x< \dfrac{-2-\sqrt{7}}{3}\end{matrix}\right.\)

Đặt y'<0

=>\(3x^2+4x-1< 0\)

=>\(\dfrac{-2-\sqrt{7}}{3}< x< \dfrac{-2+\sqrt{7}}{3}\)

Vậy: Hàm số đồng biến trên các khoảng \(\left(-\infty;\dfrac{-2-\sqrt{7}}{3}\right);\left(\dfrac{-2+\sqrt{7}}{3};+\infty\right)\)

Hàm số nghịch biến trên khoảng \(\left(\dfrac{-2-\sqrt{7}}{3};\dfrac{-2+\sqrt{7}}{3}\right)\)

c: \(y=\left(x+2\right)\left(2x^2-3\right)\)

=>\(y'=\left(x+2\right)'\left(2x^2-3\right)+\left(x+2\right)\left(2x^2-3\right)'\)

\(=2x^2-3+4x\left(x+2\right)\)

\(=6x^2+8x-3\)

Đặt y'>0

=>\(6x^2+8x-3>0\)

=>\(\left[{}\begin{matrix}x>\dfrac{-4+\sqrt{34}}{6}\\x< \dfrac{-4-\sqrt{34}}{6}\end{matrix}\right.\)

Đặt y'<0

=>\(6x^2+8x-3< 0\)

=>\(\dfrac{-4-\sqrt{34}}{6}< x< \dfrac{-4+\sqrt{34}}{6}\)

Vậy: hàm số đồng biến trên các khoảng \(\left(-\infty;\dfrac{-4-\sqrt{34}}{6}\right);\left(\dfrac{-4+\sqrt{34}}{6};+\infty\right)\)

Hàm số nghịch biến trên khoảng \(\left(\dfrac{-4-\sqrt{34}}{6};\dfrac{-4+\sqrt{34}}{6}\right)\)

d: \(y=\left(x-1\right)^2\left(x+2\right)\)

\(=\left(x^2-2x+1\right)\left(x+2\right)\)

\(=x^3+2x^2-2x^2-4x+x+2\)

=>\(y=x^3-3x+2\)

=>\(y'=3x^2-3\)

Đặt y'>0

=>\(3x^2-3>0\)

=>\(x^2>1\)

=>\(\left[{}\begin{matrix}x>1\\x< -1\end{matrix}\right.\)

Đặt y'<0

=>\(3x^2-3< 0\)

=>x^2<1

=>-1<x<1

Vậy: Hàm số đồng biến trên các khoảng \(\left(1;+\infty\right);\left(-\infty;-1\right)\)

Hàm số nghịch biến trên khoảng (-1;1)

13 tháng 11 2023

loading...  loading...  loading...  loading...  loading...  loading...  

13 tháng 10 2023

a: \(y'< 0\)

=>\(\left(x-3\right)^3\cdot\left(x-1\right)^{22}\cdot\left(-3x-6\right)^7< 0\)

=>\(\left(x-3\right)\left(-3x-6\right)< 0\)

=>\(\left(x+2\right)\left(x-3\right)>0\)

=>\(\left[{}\begin{matrix}x>3\\x< -2\end{matrix}\right.\)

y'>0

=>\(\left(x+2\right)\left(x-3\right)< 0\)

=>\(-2< x< 3\)

y'=0

=>\(\left[{}\begin{matrix}x-3=0\\x-1=0\\-3x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\\x=-2\end{matrix}\right.\)

Ta có bảng xét dấu sau:

x\(-\infty\)       -2                    1               3               +\(\infty\)
y'-              0        +          0      +       0              -

Vậy: Hàm số đồng biến trên các khoảng \(\left(-2;1\right);\left(1;3\right)\)

Hàm số nghịch biến trên các khoảng \(\left(-\infty;-2\right);\left(3;+\infty\right)\)

b: y'<0

=>\(\left(4x-3\right)^3\cdot\left(x^2-1\right)^{21}\left(3x-9\right)^7< 0\)

=>\(\left(4x-3\right)\left(3x-9\right)\left(x^2-1\right)< 0\)

=>\(\left(4x-3\right)\left(x-3\right)\left(x^2-1\right)< 0\)

TH1: \(\left\{{}\begin{matrix}\left(4x-3\right)\left(x-3\right)>0\\x^2-1< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\left[{}\begin{matrix}x>3\\x< \dfrac{3}{4}\end{matrix}\right.\\-1< x< 1\end{matrix}\right.\Leftrightarrow-1< x< \dfrac{3}{4}\)

TH2: \(\left\{{}\begin{matrix}\left(4x-3\right)\left(x-3\right)< 0\\x^2-1>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{4}< x< 3\\\left[{}\begin{matrix}x>1\\x< -1\end{matrix}\right.\end{matrix}\right.\Leftrightarrow1< x< 3\)

y'>0

=>\(\left(4x-3\right)\left(x-3\right)\left(x^2-1\right)>0\)

TH1: \(\left\{{}\begin{matrix}\left(4x-3\right)\left(x-3\right)>0\\x^2-1>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\left[{}\begin{matrix}x>3\\x< \dfrac{3}{4}\end{matrix}\right.\\\left[{}\begin{matrix}x>1\\x< -1\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>3\\x< -1\end{matrix}\right.\)

TH2: \(\left\{{}\begin{matrix}\left(4x-3\right)\left(x-3\right)< 0\\x^2-1< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{3}{4}< x< 3\\-1< x< 1\end{matrix}\right.\Leftrightarrow\dfrac{3}{4}< x< 1\)

Ta sẽ có bảng xét dấu sau đây:

x\(-\infty\)       -1        3/4        1       3          +\(\infty\)
y'+                   0   -     0     +   0   -   0             +

Vậy: Hàm số đồng biến trên các khoảng \(\left(-\infty;-1\right);\left(\dfrac{3}{4};1\right);\left(3;+\infty\right)\)

Hàm số nghịch biến trên các khoảng \(\left(-1;\dfrac{3}{4}\right);\left(1;3\right)\)

a: Đặt y'>0

=>(2x-3)(x^2-1)>0

Th1: 2x-3>0 và x^2-1>0

=>x>3/2 và (x>1 hoặc x<-1)

=>x>3/2

TH2: 2x-3<0 và x^2-1<0

=>x<3/2 và -1<x<1

=>-1<x<1

=>Hàm số đồng biến khi x>3/2 hoặc -1<x<1

Đặt y'<0

=>(2x-3)(x^2-1)<0

TH1: 2x-3>0 và x^2-1<0

=>x>3/2 và -1<x<1

=>Loại

TH2: 2x-3<0 và x^2-1>0

=>x<3/2 và (x>1 hoặc x<-1)

=>1<x<3/2 hoặc x<-1

=>Hàm số nghịch biến khi 1<x<3/2 hoặc x<-1

b: Đặt y'>0

=>(x+2)(2x+5)<0

=>-5/2<x<-2

=>hàm số đồng biến khi -5/2<x<-2

Đặt y'<0

=>(x+2)(2x+5)>0

=>x>-2 hoặc x<-5/2

=>Hàm số nghịch biến khi x>-2 hoặc x<-5/2

12 tháng 11 2023

a:

ĐKXĐ: \(x\notin\left\{\dfrac{3}{2};1\right\}\)

 \(y=\dfrac{\left(x-2\right)^2}{\left(2x-3\right)\left(x-1\right)}=\dfrac{x^2-4x+4}{2x^2-2x-3x+3}\)

=>\(y=\dfrac{x^2-4x+4}{2x^2-5x+3}\)

=>\(y'=\dfrac{\left(x^2-4x+4\right)'\left(2x^2-5x+3\right)-\left(x^2-4x+4\right)\left(2x^2-5x+3\right)'}{\left(2x^2-5x+3\right)^2}\)

=>\(y'=\dfrac{\left(2x-4\right)\left(2x^2-5x+3\right)-\left(2x-5\right)\left(x^2-4x+4\right)}{\left(2x^2-5x+3\right)^2}\)

=>\(y'=\dfrac{4x^3-10x^2+6x-8x^2+20x-12-2x^3+8x^2-8x+5x^2-20x+20}{\left(2x^2-5x+3\right)^2}\)

=>\(y'=\dfrac{2x^3-5x^2-2x+8}{\left(2x^2-5x+3\right)^2}\)

b:

ĐKXĐ: x<>-3

 \(y=\left(x+3\right)+\dfrac{4}{x+3}\)

=>\(y'=\left(x+3+\dfrac{4}{x+3}\right)'=1+\left(\dfrac{4}{x+3}\right)'\)

\(=1+\dfrac{4'\left(x+3\right)-4\left(x+3\right)'}{\left(x+3\right)^2}\)

=>\(y'=1+\dfrac{-4}{\left(x+3\right)^2}=\dfrac{\left(x+3\right)^2-4}{\left(x+3\right)^2}\)

y'=0

=>\(\left(x+3\right)^2-4=0\)

=>\(\left(x+3+2\right)\left(x+3-2\right)=0\)

=>(x+5)(x+1)=0

=>x=-5 hoặc x=-1

c:

ĐKXĐ: x<>-2

 \(y=\dfrac{\left(5x-1\right)\left(x+1\right)}{x+2}\)

=>\(y=\dfrac{5x^2+5x-x-1}{x+2}=\dfrac{5x^2+4x-1}{x+2}\)

=>\(y'=\dfrac{\left(5x^2+4x-1\right)'\left(x+2\right)-\left(5x^2+4x-1\right)\left(x+2\right)'}{\left(x+2\right)^2}\)

=>\(y'=\dfrac{\left(5x+4\right)\left(x+2\right)-\left(5x^2+4x-1\right)}{\left(x+2\right)^2}\)

=>\(y'=\dfrac{5x^2+10x+4x+8-5x^2-4x+1}{\left(x+2\right)^2}\)

=>\(y'=\dfrac{10x+9}{\left(x+2\right)^2}\)

\(y'\left(-1\right)=\dfrac{10\cdot\left(-1\right)+9}{\left(-1+2\right)^2}=\dfrac{-1}{1}=-1\)

d: 

ĐKXĐ: x<>2

\(y=x-2+\dfrac{9}{x-2}\)

=>\(y'=\left(x-2+\dfrac{9}{x-2}\right)'=1+\left(\dfrac{9}{x-2}\right)'\)

\(=1+\dfrac{9'\left(x-2\right)-9\left(x-2\right)'}{\left(x-2\right)^2}\)

=>\(y'=1+\dfrac{-9}{\left(x-2\right)^2}=\dfrac{\left(x-2\right)^2-9}{\left(x-2\right)^2}\)

y'=0

=>\(\dfrac{\left(x-2\right)^2-9}{\left(x-2\right)^2}=0\)

=>\(\left(x-2\right)^2-9=0\)

=>(x-2-3)(x-2+3)=0

=>(x-5)(x+1)=0

=>x=5 hoặc x=-1

12 tháng 11 2023

a: \(y=\left(x-1\right)^3\)

=>\(y'=\left[\left(x-1\right)^3\right]'=3\left(x-1\right)^2\cdot\left(x-1\right)'\)

\(=3\left(x-1\right)^2\)

b: \(y=\left(x+2\right)\left(2x^2-3\right)\)

=>\(y'=\left(x+2\right)'\left(2x^2-3\right)+\left(x+2\right)\left(2x^2-3\right)'\)

=>\(y'=2x^2-3+2\left(x+2\right)\)

\(=2x^2+2x+1\)

c: \(y=\left(x-1\right)^2\left(x+2\right)\)

=>\(y=\left(x^2-2x+1\right)\left(x+2\right)\)

=>\(y'=\left(x^2-2x+1\right)'\left(x+2\right)-\left(x^2-2x+1\right)\left(x+2\right)'\)

=>\(y'=\left(2x-2\right)\left(x+2\right)-x^2+2x-1\)

\(=2x^2+4x-2x-4-x^2+2x-1\)

=>\(y'=x^2+4x-5\)

c: \(y=\left(x^2-1\right)\left(2x+1\right)\)

=>\(y'=\left(x^2-1\right)'\left(2x+1\right)+\left(x^2-1\right)\left(2x+1\right)'\)

\(=2x\left(2x+1\right)+2\left(x^2-1\right)\)

\(=4x^2+2x+2x^2-2=6x^2+2x-2\)

11 tháng 11 2023

a: \(y=-x^3-\left(m+1\right)x^2+3\left(m+1\right)x\)

=>\(y'=-3x^2-\left(m+1\right)\cdot2x+3\left(m+1\right)\)

=>\(y'=-3x^2+x\cdot\left(-2m-2\right)+\left(3m+3\right)\)

Để hàm số nghịch biến trên R thì \(y'< =0\forall x\)

=>\(\left\{{}\begin{matrix}\text{Δ}< =0\\a< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\left(-2m-2\right)^2-4\cdot\left(-3\right)\left(3m+3\right)< =0\\-3< 0\end{matrix}\right.\)

=>\(4m^2+8m+4+12\left(3m+3\right)< =0\)

=>\(4m^2+8m+4+36m+36< =0\)

=>\(4m^2+44m+40< =0\)

=>\(m^2+11m+10< =0\)

=>\(\left(m+1\right)\left(m+10\right)< =0\)

TH1: \(\left\{{}\begin{matrix}m+1>=0\\m+10< =0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m>=-1\\m< =-10\end{matrix}\right.\)

=>\(m\in\varnothing\)

TH2: \(\left\{{}\begin{matrix}m+1< =0\\m+10>=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m< =-1\\m>=-10\end{matrix}\right.\)

=>-10<=m<=-1

b: \(y=-\dfrac{1}{3}x^3+mx^2-\left(2m+3\right)x\)

=>\(y'=-\dfrac{1}{3}\cdot3x^2+m\cdot2x-\left(2m+3\right)\)

=>\(y'=-x^2+2m\cdot x-\left(2m+3\right)\)

Để hàm số nghịch biến trên R thì \(y'< =0\forall x\)

=>\(\left\{{}\begin{matrix}\text{Δ}< =0\\a< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-1< 0\\\left(2m\right)^2-4\cdot\left(-1\right)\cdot\left(-2m-3\right)< =0\end{matrix}\right.\)

=>\(4m^2+4\left(-2m-3\right)< =0\)

=>\(m^2-2m-3< =0\)

=>(m-3)(m+1)<=0

TH1: \(\left\{{}\begin{matrix}m-3>=0\\m+1< =0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m>=3\\m< =-1\end{matrix}\right.\)

=>\(m\in\varnothing\)

TH2: \(\left\{{}\begin{matrix}m-3< =0\\m+1>=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m< =3\\m>=-1\end{matrix}\right.\)

=>-1<=m<=3

12 tháng 11 2023

a: \(y=\left(x+2\right)\left(2x^2-3\right)\)

=>\(y'=\left(x+2\right)'\left(2x^2-3\right)+\left(x+2\right)\left(2x^2-3\right)'\)

=>\(y'=2x^2-3+\left(x+2\right)\cdot2x\)

\(\Leftrightarrow y'=2x^2-3+2x^2+4x=4x^2+4x-3\)

b: \(y=\left(x-1\right)^2\left(x+2\right)\)

=>\(y=\left(x^2-2x+1\right)\left(x+2\right)\)

=>\(y'=\left(x^2-2x+1\right)'\left(x+2\right)+\left(x^2-2x+1\right)\left(x+2\right)'\)

=>\(y'=\left(2x-2\right)\left(x+2\right)+\left(x^2-2x+1\right)\)

=>\(y'=2x^2+4x-2x-4+x^2-2x+1\)

=>\(y'=3x^2-3\)

c: \(y=\left(x^2-1\right)\left(2x+1\right)\)

=>\(y'=\left(x^2-1\right)'\left(2x+1\right)+\left(x^2-1\right)\left(2x+1\right)'\)

=>\(y'=2x\left(2x+1\right)+2\left(x^2-1\right)\)

=>\(y'=4x^2+2x+2x^2-2=6x^2+2x-2\)

d: \(y=\left(x+2\right)\left(2x^2-5\right)\)

=>\(y'=\left(x+2\right)'\left(2x^2-5\right)+\left(x+2\right)\left(2x^2-5\right)'\)

=>\(y'=2x^2-5+2x\left(x+2\right)=4x^2+4x-5\)