Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Bài 1 e bấm máy
Nhấn Shift + log sẽ xuất hiện tổng sigma
e nhập như sau:
x = 1
cái ô trống ở trên nhập 2007
còn cái biểu thức trong dấu ngoặc đơn là \(\left(\frac{1}{\left(X+1\right)\sqrt{X}+X\sqrt{X+1}}\right)\)
Rồi bấm "="
Chờ máy hiện kq sẽ hơi lâu :)
kq: 0.9776839079
2.
-B1: Tìm số dư của \(2^{2009}\) cho 11 đc kq là 6
- B2: Tìm số dư của \(3^6\) cho 11 đc kq là 3
Vậy \(3^{2^{2009}}\) chia 11 dư 3
3. Gọi độ dài đường chéo ngắn hơn là x, thì độ dài đường chéo kia là 3/2 x
Cạnh hình thoi: 37 : 4 = 9.25 (cm)
Theo định lý Pytago
\(x^2+\left(\frac{3}{2}x\right)^2=9.25^2\)
Vào Shift Solve giải ra tìm đc \(x\approx5.130976815\)
Vậy \(S=\frac{1}{2}x.\frac{3}{2}x=\frac{4107}{208}\approx19.7451923076\left(cm^2\right)\)
Bài 2:
\(P=\frac{1}{1+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{9}}+...+\frac{1}{\sqrt{2001}+\sqrt{2005}}\)
\(=\frac{1-\sqrt{5}}{\left(1+\sqrt{5}\right)\left(1-\sqrt{5}\right)}+\frac{\sqrt{5}-\sqrt{9}}{\left(\sqrt{5}+\sqrt{9}\right)\left(\sqrt{5}-\sqrt{9}\right)}+...+\frac{\sqrt{2001}-\sqrt{2005}}{\left(\sqrt{2001}+\sqrt{2005}\right)\left(\sqrt{2001}-\sqrt{2005}\right)}\)
\(=\frac{1-\sqrt{5}}{1-5}+\frac{\sqrt{5}-\sqrt{9}}{5-9}+...+\frac{\sqrt{2001}-\sqrt{2005}}{2001-2005}\)
\(=\frac{1-\sqrt{5}}{-4}+\frac{\sqrt{5}-\sqrt{9}}{-4}+..+\frac{\sqrt{2001}-\sqrt{2005}}{-4}\)
\(=\frac{1-\sqrt{5}+\sqrt{5}-\sqrt{9}+...+\sqrt{2001}-\sqrt{2005}}{-4}\)
\(=\frac{1-\sqrt{2005}}{-4}\)
\(=\frac{\sqrt{2005}-1}{4}\)
Bài 2:
\(D=\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+\frac{1}{4\sqrt{3}+3\sqrt{4}}+...+\frac{1}{120\sqrt{121}+121\sqrt{120}}\)
Với mọi \(n\inℕ^∗\)ta có:
\(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}\)
\(=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{[\left(n+1\right)\sqrt{n}]^2-\left(n\sqrt{n+1}\right)^2}\)
\(=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)^2-n^2\left(n+1\right)}\)
\(=\frac{\left(n+1\right)\sqrt{n}-n\left(\sqrt{n}+1\right)}{n\left(n+1\right)\left(n+1-n\right)}\)
\(=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}\)
\(=\frac{\left(n+1\right)\sqrt{n}}{n\left(n+1\right)}-\frac{n\sqrt{n+1}}{n\left(n+1\right)}\)
\(=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
\(\Rightarrow D=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{4}}+\frac{1}{\sqrt{4}}+....+\frac{1}{\sqrt{120}}-\frac{1}{\sqrt{121}}\)
\(=1-\frac{1}{\sqrt{121}}=\frac{10}{11}\)
Bài 1: chắc lại phải "liên hợp" gì đó rồi:V
\(\sqrt{2009}-\sqrt{2008}=\frac{1}{\sqrt{2009}+\sqrt{2008}}\)
\(\sqrt{2007}-\sqrt{2006}=\frac{1}{\sqrt{2007}+\sqrt{2006}}\)
Đó \(\sqrt{2009}+\sqrt{2008}>\sqrt{2007}+\sqrt{2006}\)
Nên \(\sqrt{2009}-\sqrt{2008}< \sqrt{2007}-\sqrt{2006}\)
Tổng quát ta có bài toán sau, với So sánh \(\sqrt{n}-\sqrt{n-1}\text{ và }\sqrt{n-2}-\sqrt{n-3}\)
Với \(n\ge3\). Lời giải xin mời các bạn:)
a) Trục căn thức ở mỗi số hạng của biểu thức A,ta có:
\(A=\frac{1}{\sqrt{1}-\sqrt{2}}-\frac{1}{\sqrt{2}-\sqrt{3}}+\frac{1}{\sqrt{3}-\sqrt{4}}-...+\frac{1}{\sqrt{2007}-\sqrt{2008}}\)=\(\frac{\sqrt{2}+\sqrt{1}}{1-2}-\frac{\sqrt{3}+\sqrt{2}}{2-3}+\frac{\sqrt{3}+\sqrt{4}}{3-4}-...+\frac{\sqrt{2007}+\sqrt{2008}}{2007-2008}\)
= \(-\left(\sqrt{1}+\sqrt{2}\right)+\left(\sqrt{2}+\sqrt{3}\right)-\left(\sqrt{3}+\sqrt{4}\right)+...-\left(\sqrt{2007}+\sqrt{2008}\right)\)
=\(-1-\sqrt{2008}\)
b)Ta xét số hạng tổng quát: \(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}\)=\(\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{\left(n+1\right)^2n-n^2\left(n+1\right)}\)=\(\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}\)=\(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
Áp dụng vào biểu thức B ta được:
B= \(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}-...+\frac{1}{\sqrt{120}}-\frac{1}{\sqrt{121}}=1-\frac{1}{11}\)= \(\frac{10}{11}\)
\(A=\frac{1}{\sqrt{1}-\sqrt{2}}-\frac{1}{\sqrt{2}-\sqrt{3}}+\frac{1}{\sqrt{3}-\sqrt{4}}-\frac{1}{\sqrt{4}-\sqrt{5}}+...+\frac{1}{\sqrt{2007}-\sqrt{2008}}\)
\(=\frac{-1}{\sqrt{2}-\sqrt{1}}+\frac{1}{\sqrt{3}-\sqrt{2}}-\frac{1}{\sqrt{4}-\sqrt{3}}+\frac{1}{\sqrt{5}-\sqrt{4}}-....+\frac{1}{\sqrt{2007}-\sqrt{2006}}-\frac{1}{\sqrt{2008}-\sqrt{2007}}\)
\(=\frac{-1\cdot\left(\sqrt{2}+\sqrt{1}\right)}{2-1}+\frac{1\cdot\left(\sqrt{3}+\sqrt{2}\right)}{3-2}-\frac{1\cdot\left(\sqrt{4}+\sqrt{3}\right)}{4-3}+\frac{1\cdot\left(\sqrt{5}+\sqrt{4}\right)}{5-4}-...+\frac{1\cdot\left(\sqrt{2007}+\sqrt{2006}\right)}{2007-2006}-\frac{1 \left(\sqrt{2008}+\sqrt{2007}\right)}{2008-2007}\)
\(=-1-\sqrt{2}+\sqrt{2}+\sqrt{3}-\sqrt{3}-\sqrt{4}+\sqrt{4}+\sqrt{5}-...+\sqrt{2006}+\sqrt{2007}-\sqrt{2007}-\sqrt{2008}\)
\(=-1-\sqrt{2008}\)
Ap dung \(\frac{1}{\left(n+1\right)\sqrt{n}}< 2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
Ta co \(P< 2\left(1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2007}}-\frac{1}{\sqrt{2008}}\right)\)
=> \(P< 2\left(1-\frac{1}{\sqrt{2008}}\right)< 2.1=2\)
Suy ra P khong phai so nguyen to
Lời giải:
Xét số hạng tổng quát $\frac{1}{(n+1)\sqrt{n}}$
Ta có:
$\frac{1}{(n+1)\sqrt{n}}=\frac{2}{2(n+1)\sqrt{n}}=\frac{2}{(n+1)\sqrt{n}+(n+1)\sqrt{n}}$
$< \frac{2}{(n+1)\sqrt{n}+n\sqrt{n+1}}=\frac{2(\sqrt{n+1}-\sqrt{n})(\sqrt{n+1}+\sqrt{n})}{\sqrt{n(n+1)}(\sqrt{n}+\sqrt{n+1})}=\frac{2(\sqrt{n+1}-\sqrt{n})}{\sqrt{n(n+1)}}=\frac{2}{\sqrt{n}}-\frac{2}{\sqrt{n+1}}$
Do đó:
$P< \frac{2}{\sqrt{1}}-\frac{2}{\sqrt{2}}+\frac{2}{\sqrt{2}}-\frac{2}{\sqrt{3}}+....+\frac{2}{\sqrt{2007}}-\frac{2}{\sqrt{2008}}=2-\frac{2}{\sqrt{2008}}< 2$
Do đó $P$ không thể là số nguyên tố.
\(\frac{1}{\sqrt{n}+\sqrt{n+1}}=\sqrt{n+1}-\sqrt{n}\)
Áp dụng vô là được
\(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+........+\frac{1}{\sqrt{2007}+\sqrt{2008}}\)
\(=\frac{1-\sqrt{2}}{1-2}+\frac{\sqrt{2}-\sqrt{3}}{2-3}+........+\frac{\sqrt{2007}-\sqrt{2008}}{2007-2008}\)
\(=\frac{1-\sqrt{2}+\sqrt{2}-\sqrt{3}+..........+\sqrt{2007}-\sqrt{2008}}{-1}\)
\(=\frac{1-\sqrt{2008}}{-1}=\sqrt{2008-1}\)