Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Để hàm số đồng biến thì k(k-3)>0
\(\Leftrightarrow\left[{}\begin{matrix}k>3\\k< 0\end{matrix}\right.\)
b) Để hàm số nghịch biến thì k(k-3)<0
hay 0<x<3
a) Hàm số đồng biến nếu \(\dfrac{k^2+2}{k-3}>0\) \(\Leftrightarrow k>3\)
b) Hàm số nghịch biến nếu \(\dfrac{k+\sqrt{2}}{k^2+\sqrt{3}}< 0\Leftrightarrow k< -\sqrt{2}\)
Ở định nghĩa trong SGK
Cho hàm số y=ax+b
Đồng biến khi a>0
Nghich biến khi a<0
a) Đồng biến
k^2-5k-6 >0 <=> k<-1 hoặc k>6
b) Nghịch biến
2k^2+3k-2 <0 <=> -2<k<1/2
a Để hàm số y đồng biến trên R
thì k2+2/k-3 > 0 đk k khác 3
mà k2+2>0 thì k-3 > 0 suy ra k>3
b Để hàm số Y đồng biến trên R
thì k+ căn 2/ k2+ căn 3 < 0 mà x2+ căn 3 >0 suy ra k< - căn 2
đb <=> \(k^2-4>0\)
\(\Leftrightarrow k^2>4\)
\(\Leftrightarrow\orbr{\begin{cases}k>2\\k>-2\end{cases}}\)
\(\Leftrightarrow k>2\)
nb <=> \(k^2-4< 0\)
\(\Leftrightarrow k^2< 4\)
\(\Leftrightarrow\orbr{\begin{cases}k< 2\\k< -2\end{cases}}\)
\(\Leftrightarrow k< -2\)
vậy .......
\(a,\Leftrightarrow k-2\ne0\Leftrightarrow k\ne2\\ b,\text{Đồng biến }\Leftrightarrow k-2>0\Leftrightarrow k>2\\ \text{Nghịch biến }\Leftrightarrow k-2< 0\Leftrightarrow k< 2\\ c,\Leftrightarrow x=0;y=0\Leftrightarrow k=0\\ d,\Leftrightarrow-\left(k-2\right)+k=2\Leftrightarrow0k+2=2\Leftrightarrow k\in R\)