Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\Leftrightarrow2x^4-2x^3+2x^2+3x^3-3x^2+3x-2x^2+2x+2+a-2⋮x^2-x+1\)
=>a=2
b: \(=\dfrac{2x^4-2x^3-2x^2-3x^3+3x^2+3x+x^2-x-1}{x^2-x-1}\)
\(=2x^2-3x+1\)
Đa thức x + 4 có nghiệm khi và chỉ khi x + 4 = 0 \(\Leftrightarrow x=-4\)
Vậy -4 là nghiệm của đa thức x + 4.
Để đa thức 4x2 - 5x + x^3 + m chia hết cho đa thức x + 4 thì -4 cũng là nghiệm của đa thức 4x2 - 5x + x^3 + m
Khi đó: \(4.\left(-4\right)^2-5.\left(-4\right)+\left(-4\right)^3+m=0\)
\(\Leftrightarrow64+20-64+m=0\)
\(\Leftrightarrow20+m=0\)
\(\Leftrightarrow m=-20\)
Vậy m = -20 thì đa thức 4x2 - 5x + x^3 + m chia hết cho đa thức x + 4
Để x4 - 5x2 + 4x + a ⋮ 2x + 1 thì :
x4 - 5x2 + 4x + a = ( 2x + 1 ) . Q
Vì đẳng thức trên đúng với mọi x nên đặt x = \(\frac{-1}{2}\)ta có :
\(\left(\frac{-1}{2}\right)^4-5\cdot\left(\frac{-1}{2}\right)^2+4\cdot\left(\frac{-1}{2}\right)+a=\left[2\cdot\left(\frac{-1}{2}\right)+1\right]\cdot Q\)
\(\Leftrightarrow\frac{1}{16}-\frac{5}{4}-2+a=0\cdot Q\)
\(\Leftrightarrow\frac{-51}{16}+a=0\)
\(\Leftrightarrow a=\frac{51}{16}\)
Vậy......
x^2-x+1 x^4+x^3-4x^2+5x-a x^2+2x-3 x^4-x^3+x^2 2x^3-5x^2+5x-a 2x^3-2x^2+2x -3x^2+3x-a -3x^2+3x-3 -(a-3)
Để đa thức x4+x3-4x2+5x-a chia hết cho đa thức x2-x+1 thì
\(-\left(a-3\right)=0\)
\(\Leftrightarrow a-3=0\Leftrightarrow a=3\)
Vậy a = 3 thì đa thức x4+x3-4x2+5x-a chia hết cho đa thức x2-x+1
Có A = x4 + x3 - 4x2 + 5x - a
= x4 - x3 + x2 + 2x3 - 2x2 + 2x - 3x2 + 3x - 3 - a + 3
= x2(x2 - x + 1) + 2x(x2 - x + 1) - 3(x2 - x + 1) - (a - 3)
= (x2 - x + 1)(x2 + 2x - 3) - (a - 3)
Do (x2 - x + 1)(x2 + 2x - 3) chia hết cho x2 - x + 1 nên để A chia hết cho x2 - x + 1
thì - (a - 3) = 0 <=> a = 3