Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn B.
Hình chóp tứ giác đều có 1 trục đối xứng đó là trục của đường tròn ngoại tiếp đáy.
Chọn B
Hình chóp tứ giác đều có 1 trục đối xứng đó là trục của đường tròn ngoại tiếp đáy.
Hình chóp tứ giác đều có 4 mặt phẳng đối xứng đó là:
(SAC), (SBD), (SMN), (SIJ), với M, N, I, J lần lượt là trung điểm của AB, CD, DA, BC.
Chọn D.
Chọn D
Hình chóp tứ giác đều có 4 mặt phẳng đối xứng đó là:
(SAC), (SBD), (SMN), (SIJ), với M, N, I, J lần lượt là trung điểm của AB, CD, DA, BC
Gọi E là trung điểm BC → AE vuông góc (vg) với BC
mà (ABC) vg (BB'C'C)
→ AE vg (BB'C'C)
\(V_{A.BB'C'C}=\frac{1}{3}\cdot AE\cdot S_{BB'C'C}=\frac{1}{3}\cdot\frac{a\sqrt{3}}{2}\cdot BB'\cdot BC=\frac{a^3\sqrt{3}}{3}\)
Vì SBB'C = 1/2 * SBB'C'C
nên VABB'C' = 1/2 * VA.BB'C'C = (a3căn3)/6
Vì trục OO’ vuông góc với các đáy nên OO′ ⊥ OA; OO′ ⊥ O′B. Vậy các tam giác AOO’ và BO’O vuông tại O và O’.
Theo giả thiết ta có AO ⊥ O′B mà AO ⊥ OO′ ⇒ AO ⊥ (OO′B). Do đó, AO ⊥ OB nên tam giác AOB vuông tại O. Tương tự, ta chứng minh được tam giác AO’B vuông tại O’. Thể tích hình chóp OABO’ là:
Hay
Đáp án D
Gọi H là trung điểm của CD. Khi đó ta có AH ⊥ (BCD), BH ⊥ (ACD). Gọi P, Q lần lượt là tâm của các tam giác đều BCD và ACD. Dựng hình chữ nhật HPIQ thì nó là hình vuông và I là tâm mặt cầu ngoại tiếp tứ diện. Khi đó ta có bán kính mặt cầu là
5 tứ giác
sai r