Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) a) Phương trình có x1 và x2 trái dấu
\(\Leftrightarrow2m-4< 0\Leftrightarrow2m< 4\Leftrightarrow m< 2\)
b) Phương trình có x1 và x2 cùng dương
\(\Leftrightarrow\hept{\begin{cases}m^2-2m+4=0\\2m>0\\2m-4>0\end{cases}\Leftrightarrow\hept{\begin{cases}\left(m-1\right)^2+3>0\left(BĐTđúng\right)\\m>0\\m>2\end{cases}\Leftrightarrow}m>2}\)
c) Phương trình có x1 và x2 cùng âm
\(\Leftrightarrow\hept{\begin{cases}m^2-2m+4>0\\2m< 0\\2m-4>0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(m-1\right)^2+3>0\\m< 0\\m>2\end{cases}\Leftrightarrow0>m>2}\)
P/s: không chắc -.-
a,\(A=x^2-2x+\frac{1}{x-1}\)
\(A=x^2-2x+1-\frac{x-2}{x-1}\)
\(A=\left(x-1\right)^2+\frac{-\left(x-2\right)}{x-1}\ge\frac{-\left(x-2\right)}{x-1}\)
Do \(x-2>x-1\Rightarrow-\left(x-2\right)< x-1\)
Mà \(\frac{-\left(x-2\right)}{x-1}\ge-1\)
Vậy Min A = -1 <=> x = 1
Ta có : \(\left|10,2-3x\right|\ge0\forall x\)
\(\Rightarrow-\left|10,2-3x\right|\le0\forall x\)
\(\Rightarrow-\left|10,2-3x\right|-14\le-14\forall x\)
Dấu "=" xảy ra <=> |10,2 - 3x| = 0
=> 10,2 - 3x = 0
=> 3x = 10,2
=> x = 3,4
Vậy GTLN của F là - 14 khi x = 3,4
Ta có :
\(\left|10,2-3x\right|\ge0\forall x\)
\(\Rightarrow-\left|10,2-3x\right|\le0\forall x\)
\(\Rightarrow-\left|10,2-3x\right|-14\le-14\forall x\)
Mà \(F=-\left|10,2-3x\right|-14\)
\(\Rightarrow F\le-14\)
\(\Leftrightarrow10,2-3x=0\Leftrightarrow3x=10,2\Leftrightarrow x=3,4\)
Vậy ..............\(\Rightarrow-\left|10,2-3x\right|-14\le-14\forall x\)
con số năm
con t5 nha