K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2017

Gọi chiều dài và chiều rộng hình chữ nhật lần lượt là a và b.

Ta có:

\(a.b=2\left(a+b\right)\)

\(\Rightarrow2\left(a+b\right)-ab=0\)

\(2a+2b-ab=0\)

\(a\left(2-b\right)+2b=0\)

\(a\left(2-b\right)+2b-4=0-4\)

\(a\left(2-b\right)-2\left(2-b\right)=-4\)

\(\left(a-2\right)\left(2-b\right)=-4\)

\(\Rightarrow a-2;2-b\inƯ\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)

Do a,b>0 nên loại -1;-2;-4

Ta có bảng sau:

a-2 1 2 4
a 3 4 6
2-b 1 2 4
b 1 0(loại) -2(loại)

Vậy...

19 tháng 12 2017

cảm ơn nha

1 tháng 10 2016

Gọi chiều dài là a, chiều rộng là b

Ta có :

\(a.b=2\left(a+b\right)\)

\(\Rightarrow2\left(a+b\right)-ab=0\)

\(2a+2b-ab=0\)

\(a\left(2-b\right)+2b=0\)

\(a\left(2-b\right)+2b-4=0-4\)

\(a\left(2-b\right)-2\left(2-b\right)=-4\)

\(\left(a-2\right)\left(b-2\right)=4\)

\(\Rightarrow a-2;b-2\inƯ\left(4\right)=\left\{-4;-2;-1;1;2;4\right\}\)

Do \(a,b>0\) nên ta bỏ giá trị -4 và -2

Ta có bảng :

a-2-1 1  2  4  
a13        4        6        
b-2-4 ( loại )421
b/////643
22 tháng 2 2020

chiều dài phải lớn hơn chiều rộng chứ bạn

a: C=4a

b: S=a2

c: C=(a+b)*2

d: S=7a

e: S=1/2*a*h

f: S=(a+b)*h/2

13 tháng 8 2020

gọi các cạnh của tam giác vuông là x,y,z trong đó z là cạnh huyền

theo đề ra ta có xy=2(x+y+z) (1) và x2+y2=z2

từ x2+y2=z2 => z2=(x+y)2-2xy thay vào (1) ta có z2=(x+y)2-4(x+y+z)

z2+4z=(x+y)2-4(x+y)

z2+4z+4=(x+y)2-4(x+y)+4

(z+2)2=(x+y-2)2

=> z+2=x+y-2

=> z=x+y-4 thay vào (1) ta được xy=2(x+y+x+y-4)

xy=4x+4y-8

xy=-4x-4y=-8

x(y-4)-4(y-4)-16=-8

(x-4)(y-4)=8

(x-4)(y-4)=1.8=2.4

từ đó tìm được (x;y;z)=(5;12;13);(12;5;13);(6;8;10);(8;6;10)

13 tháng 8 2020

THAM khảo

Gọi a, b, c là số đo 3 cạnh của tam giác vuông cần tìm. Giả sử \(1\le a\le b\le c\)

Ta có hệ phương trình \(\hept{\begin{cases}a^2+b^2=c^2\left(1\right)\\ab=2\left(a+b+c\right)\left(2\right)\end{cases}}\)

Từ (1) \(c^2=\left(a+b\right)^2-2ab\)

\(\Leftrightarrow c^2=\left(a+b\right)^2-4\left(a+b+c\right)\)( theo (2))

\(\Leftrightarrow\left(a+b\right)^2-4\left(a+b\right)=c^2+4c\)

\(\left(a+b-2\right)^2=\left(c+2\right)^2\)

\(c=a+b-4\)

Thay vào (2) ta được

\(ab=2\left(a+b+a+b-4\right)\)

\(ab-4a-4b+8=0\)

\(\Leftrightarrow b\left(a-4\right)-4\left(a-4\right)=8\)

\(\Leftrightarrow\left(a-4\right)\left(b-4\right)=8\)

Phân tích 8 = 1.8 = 2.4 nên ta có:

\(\hept{\begin{cases}a=5\\b=12\end{cases}}\)hoặc \(\hept{\begin{cases}a=6\\b=8\end{cases}}\)

Từ đó ta có 2 tam giác vuông có các cạnh (5;12;13):(6;8;10) 

CRE: inter

14 tháng 2 2018

Giải: Gọi các cạnh của tam giác vuông là x, y, z; trong đó cạnh huyền là z (x, y, z là các số nguyên dương). Ta có xy = 2(x + y + z) (1) và x2 + y2 = z2 (2) Từ (2) suy ra z2 = (x + y)2 - 2xy, thay (1) vào ta có:                     z2 = (x + y)2 - 4(x + y + z)                     z2 + 4z = (x + y)2 - 4(x + y)                     z2 + 4z + 4 = (x + y)2 - 4(x + y) + 4                     (z + 2)2 = (x + y - 2)2, suy ra z + 2 = x + y - 2                      z = x + y - 4 thay vào 1 ta được:                      xy = 2(x + y + x + y - 4)                      xy - 4x - 4y = -8                       (x - 4)(y - 4) = 8 = 1.8 = 2.4 Từ đo ta tìm được các giá trị của x, y, z là; (x = 5, y = 12, z = 13); (x = 12, y = 5, z = 13); (x = 6, y = 8, z = 10); (x = 8, y = 6, z = 10).
 

14 tháng 2 2018

sang cho hỏi 

sao lại có

ab=2(a+b+c)

10 tháng 5 2017

Gọi cạnh hình tam giác là a chu vi là C diện tích là S. Theo đề bài ra ta có

C×3=S×2

C=a×3  và S=a×a:2

Mà a×3×3 = a×a:2×2

       a×9 = a×a ×1

        a×9= a×a

        Suy ra a=9 . Vậy cạnh của hình tam giác là 9

Gọi độ dài cạnh góc vuông của tam giác là a,ba,b, độ dài cạnh huyền là cc (ĐK: a,b,c∈Z+a,b,c∈Z+;a+b>c;c>a;c>ba+b>c;c>a;c>b)

Theo đề bài:

a2+b2=c2a2+b2=c2 (Định lí Py−ta−goPy−ta−go)

và ab=3.(a+b+c)ab=3.(a+b+c)

⟺2ab=6(a+b+c)⟺2ab=6(a+b+c)

⟺a2+2ab+b2=c2+6(a+b+c)⟺a2+2ab+b2=c2+6(a+b+c)

⟺(a+b)2−6(a+b)+9=c2+6c+9⟺(a+b)2−6(a+b)+9=c2+6c+9

⟺(a+b−3)2=(c+3)2⟺(a+b−3)2=(c+3)2

⟺a+b−3=c+3∨a+b−3=−3−c⟺a+b−3=c+3∨a+b−3=−3−c

⟺a+b=c+6∨a+b=−c⟺a+b=c+6∨a+b=−c (TH sau vô lí vì a+b>0>−ca+b>0>−c)

⟺a+b=c+6⟺a+b=c+6.

⟺6a+6b=6c+36⟺6a+6b=6c+36 (1)(1)

Vì a2+b2=c2a2+b2=c2

⟺(a+b)2−2ab=c2⟺(a+b)2−2ab=c2

⟺(c+6)2−2ab=c2⟺(c+6)2−2ab=c2

⟺c2+12c+36−2ab=c2⟺c2+12c+36−2ab=c2

⟺12c+36=2ab⟺12c+36=2ab

⟺6c+18=ab⟺6c+18=ab (2)(2)

Từ (1),(2)(1),(2) →6a+6b−ab=6c+36−6c−18→6a+6b−ab=6c+36−6c−18

⟺ab−6a−6b+18=0⟺ab−6a−6b+18=0

⟺(a−6)(b−6)=18⟺(a−6)(b−6)=18

Giả sử a≥ba≥b

Giải phương trình tích trên được (a;b)=(24;7);(12;9);(15;8)(a;b)=(24;7);(12;9);(15;8)

Tìm được (a;b;c)=(24;7;25);(12;9;15);(15;8;17)

21 tháng 5 2017

Đề bài này nên là các tam giác vuông

các tam giác là (3,4,5);(5,12,13)

15 tháng 9 2017

Gọi x,y,zx,y,z là các cạnh của tam giác vuông (1≤x≤y<z)(1≤x≤y<z). Ta có :

                          x2+y2=z2(1)x2+y2=z2(1)

                          xy=2(x+y+z)(2)xy=2(x+y+z)(2)

Từ (1)(1) ta có :

z2=(x+y)2−2xy=(x+y)2−4(x+y+z)⇒(x+y)2−4(x+y)+4=z2−4z+4z2=(x+y)2−2xy=(x+y)2−4(x+y+z)⇒(x+y)2−4(x+y)+4=z2−4z+4

                                                            ⇒(x+y−2)2=(z+2)2⇒(x+y−2)2=(z+2)2 

                                                            ⇒x+y−2=z+2(x+y≥2)⇒x+y−2=z+2(x+y≥2)

Thay z=x+y−4z=x+y−4 vào (2)(2) ta được :

            (x−4)(y−4)=8(x−4)(y−4)=8

⇔x−4=1;y−4=8⇔x−4=1;y−4=8 hoặc x−4=2;y−4=4x−4=2;y−4=4

⇔x=5;y=12⇔x=5;y=12 hoặc x=6;y=8