Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu a của bài này rất vô lý vì lớp 9 chưa học cách xác định nghiệm của BPT bậc 2.
\(\Delta=\left(m-2\right)^2-4\left(2m-3\right)=m^2-12m+16\)
a.
Phương trình có 2 nghiệm pb khi:
\(m^2-12m+16>0\Rightarrow\left[{}\begin{matrix}m>6+2\sqrt{5}\\m< 6-2\sqrt{5}\end{matrix}\right.\)
b.
Khi pt có 2 nghiệm, theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m-2\\x_1x_2=2m-3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2\left(x_1+x_2\right)=2m-4\\x_1x_2=2m-3\end{matrix}\right.\)
Trừ vế cho vế:
\(2\left(x_1+x_2\right)-x_1x_2=-1\)
Đây là biểu thức liên hệ 2 nghiệm ko phụ thuộc m
\(x^2+2x-1-m^2=0\Leftrightarrow\left(x-1\right)^2=m^2\)
\(\Leftrightarrow x-1=\sqrt{m^2}=\left|m\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=m\\x-1=-m\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1+m\\x=1-m\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x_1=1+m\\x_2=1-m\end{matrix}\right.\)
a) Để phương trình có nghiệm \(x_1,x_2\)
Thì \(\Delta'>0\)
\(\Leftrightarrow\left(m-2\right)^2-1.\left(2m-5\right)>0\)
\(\Leftrightarrow m^2-4m+4-2m+5>0\)
\(\Leftrightarrow m^2-6m+9>0\)
\(\Leftrightarrow\left(m-3\right)^2>0\)
\(\Leftrightarrow m\ne3\)
b)Với m khác 3. Theo hệ thức viet ta có
\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-2\right)\\x_1.x_2=2m-5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=2m-4\left(1\right)\\x_1.x_2=2m-5\left(2\right)\end{matrix}\right.\)
Lấy (1) trừ (2) ta được
\(x_1+x_2-x_1.x_2=1\) không phụ thuộc vào m
a: Δ=(2m+2)^2-4(m-6)
=4m^2+8m+4-4m+24
=4m^2+4m+28
=(2m+1)^2+27>0
=>Phương trình luôn có hai nghiệm phân biệt
c: Để (1) có ít nhất 1 nghiệm dương thì
m-6<0 hoặc (2m+2>0 và m-6>0)
=>m>6 hoặc m<6
Lời giải:
a. Áp dụng định lý Viet, với $x_1,x_2$ là nghiệm của pt thì:
$x_1+x_2=m+2$
$x_1x_2=m-1$
$\Rightarrow x_1+x_2-x_1x_2=(m+2)-(m-1)=3$
$\Leftrightarrow x_1+x_2-x_1x_2-3=0$ (đây chính là biểu thức liên hệ giữa $x_1,x_2$ mà không phụ thuộc vào $m$)
b.
$x_1+x_2=-(4m+1)$
$x_1x_2=2(m-4)$
$\Rightarrow x_1+x_2+2x_1x_2=-(4m+1)+4(m-4)=-17$
$\Rightarrow x_1+x_2+2x_1x_2+17=0$
Theo hệ thức Vi-ét ta có x 1 + x 2 = m + 5 x 1 . x 2 = 3 m + 6 ⇔ 3 ( x 1 + x 2 ) = 3 m + 15 x 1 . x 2 = 3 m + 6
⇒ 3 ( x 1 + x 2 ) − x 1 . x 2 = 3 m + 15 – 3 m – 6 = 9
Vậy hệ thức cần tìm là 3 ( x 1 + x 2 ) − x 1 . x 2 = 9
Đáp án: C
- Xét phương trình đề cho có :
\(\Delta^,=b^{,2}-ac=\left(m-1\right)^2-\left(m-2\right)=m^2-2m+1-m+2\)
\(=m^2-3m+3\ge\dfrac{3}{4}>0\)
- Phương trình luôn có hai nghiệm phân biệt với mọi m .
- Theo vi ét : \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)=2m-2\\x_1x_2=m-2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)=2m-2\\2x_1x_2=2m-4\end{matrix}\right.\)
\(\Rightarrow x_1+x_2-2x_1x_2=2m-2-2m+4=2\)
a: Khim=0 thì (1) trở thành \(x^2-2=0\)
hay \(x\in\left\{\sqrt{2};-\sqrt{2}\right\}\)
Khi m=1 thì (1) trở thành \(x^2-2x=0\)
=>x=0 hoặc x=2
b: \(\text{Δ}=\left(-2m\right)^2-4\left(2m-2\right)\)
\(=4m^2-8m+8=4\left(m-1\right)^2>=0\)
Do đó: Phương trình luôn có hai nghiệm
a: Th1: m=0
=>-2x-1=0
=>x=-1/2
=>NHận
TH2: m<>0
Δ=(-2)^2-4m(m-1)=-4m^2+4m+4
Để phương trình có nghiệm duy nhất thì -4m^2+4m+4=0
=>\(m=\dfrac{1\pm\sqrt{5}}{2}\)
b: Để PT có hai nghiệm phân biệt thì -4m^2+4m+4>0
=>\(\dfrac{1-\sqrt{5}}{2}< m< \dfrac{1+\sqrt{5}}{2}\)