K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
12 tháng 9 2023

a) Đường thẳng \(y =  - 5x - 5\) có hệ số góc là \(a =  - 5\).

b) Đường thẳng \(y = \sqrt 3 x + 3\) có hệ số góc là \(a = \sqrt 3 \).

c) Đường thẳng \(y = \sqrt {11} x + \sqrt 7 \) có hệ số góc là \(a = \sqrt {11} \).

12 tháng 9 2023

a, Hệ số góc: -5

b, Hệ số góc: \(\sqrt{3}\)

c, Hệ số góc: \(\sqrt{11}\)

 

a: Phương trình hoành độ giao điểm là:

-3x-3=-2x

=>-3x+2x=3

=>-x=3

=>x=-3

Thay x=-3 vào y=-2x, ta được:

\(y=-2\cdot\left(-3\right)=2\cdot3=6\)

Vậy: Hai đường thẳng y=-3-3x và y=-2x cắt nhau tại điểm A(-3;6)

b: Phương trình hoành độ giao điểm là:

\(3\left(x-1\right)-5x=-\sqrt{5}\cdot x-2\)

=>\(-2x-3=-\sqrt{5}\cdot x=-2\)

=>\(-2x+x\cdot\sqrt{5}=-2+3=1\)

=>\(x\left(\sqrt{5}-2\right)=1\)

=>\(x=\dfrac{1}{\sqrt{5}-2}=\sqrt{5}+2\)

Thay \(x=\sqrt{5}+2\) vào y=3(x-1)-5x, ta được:

\(y=3x-3-5x=-2x-3=-2\cdot\left(\sqrt{5}+2\right)-3\)

\(=-2\sqrt{5}-4-3=-2\sqrt{5}-7\)

Vậy: Tọa độ giao điểm của hai đường thẳng \(y=-x\sqrt{5}-2;y=3\left(x-1\right)-5x\) là \(B\left(\sqrt{5}+2;-2\sqrt{5}-7\right)\)

HQ
Hà Quang Minh
Giáo viên
12 tháng 9 2023

a) Hàm số \(y = 4x + 2\) là hàm số bậc nhất vì có dạng \(y = ax + b\) với\(a,b\) là các số cho trước và \(a \ne 0\). Ta có, \(a = 4;b = 2\).

b) Hàm số \(y = 5 - 3x =  - 3x + 5\) là hàm số bậc nhất vì có dạng \(y = ax + b\) với\(a,b\) là các số cho trước và \(a \ne 0\). Ta có, \(a =  - 3;b = 5\).

c) Hàm số \(y = 2 + {x^2}\) không phải là hàm số bậc nhất vì không có dạng \(y = ax + b\) với\(a,b\) là các số cho trước và \(a \ne 0\).

d) Hàm số \(y =  - 0,2x\) là hàm số bậc nhất vì có dạng \(y = ax + b\) với\(a,b\) là các số cho trước và \(a \ne 0\). Ta có, \(a =  - 0,2;b = 0\).

e) Hàm số \(y = \sqrt 5 x - 1\) là hàm số bậc nhất vì có dạng \(y = ax + b\) với\(a,b\) là các số cho trước và \(a \ne 0\). Ta có, \(a = \sqrt 5 ;b =  - 1\).

12 tháng 9 2023

a) \(y=4x+2\Rightarrow\left\{{}\begin{matrix}a=4\\b=2\end{matrix}\right.\)

b) \(y=5-3x\Rightarrow\left\{{}\begin{matrix}a=-2\\b=5\end{matrix}\right.\)

c) \(y=2+x^2\) không phải hàm số bậc nhất.

d) \(y=0,2x\Rightarrow\left\{{}\begin{matrix}a=-0,2\\b=0\end{matrix}\right.\)

e) \(y=\sqrt[]{5}x-1\Rightarrow\left\{{}\begin{matrix}a=\sqrt[]{5}\\b=-1\end{matrix}\right.\)

22 tháng 2 2022

1.

đk: \(x\ge2\)

Đặt y = \(\sqrt{x+2}\) ta biến pt về dạng pt thuần nhất bậc 3 đối vs x và y:

ta có : \(x^3-3x^2+2y^3-6x=0\)

\(\Leftrightarrow x^3-3xy^2+2y^3=0\)

\(\Rightarrow\left\{{}\begin{matrix}x=y\\x=-2y\end{matrix}\right.\)

ta sẽ có nghiệm : \(x=2;x=2-2\sqrt{3}\)

22 tháng 2 2022

\(1.đk:\left(x+2\right)^3\ge0\Leftrightarrow x\ge-2\)

\(pt\Leftrightarrow x^3-3x\left(x+2\right)+2\sqrt{\left(x+2\right)^3}=0\)

\(\Leftrightarrow x^3-x\left(x+2\right)+2\sqrt{\left(x+3\right)^2}-2x\left(x+2\right)=0\)

\(\Leftrightarrow x\left[x^2-\left(x+2\right)\right]+2\left(x+2\right)\left(\sqrt{x+2}-x\right)=0\)

\(\Leftrightarrow x\left[\left(x-\sqrt{x+2}\right)\left(x+\sqrt{x+2}\right)\right]+2\left(x+2\right)\left(\sqrt{x+2}-x\right)=0\)

\(\Leftrightarrow\left(\sqrt{x+2}-x\right)\left[-x\left(\sqrt{x+2}+x\right)+2\left(x+2\right)\right]=0\)

\(\Leftrightarrow\left(\sqrt{x+2}-x\right)^2\left(2\sqrt{x+2}+x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+2}=x\left(2\right)\\2\sqrt{x+2}=-x\left(3\right)\end{matrix}\right.\)

\(\left(2\right)\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x^2=x+2\end{matrix}\right.\)\(\Leftrightarrow x=2\left(tm\right)\)

\(\left(3\right)\Leftrightarrow\left\{{}\begin{matrix}-x\ge0\Leftrightarrow x\le0\\x^2=4\left(x+2\right)\end{matrix}\right.\)\(\Leftrightarrow x=2-2\sqrt{3}\left(tm\right)\)

Thay x=4 vào \(y=f\left(x\right)=\sqrt{x}\), ta được

\(f\left(4\right)=\sqrt{4}=2\)

=>A(4;2) thuộc đồ thị hàm số \(y=f\left(x\right)=\sqrt{x}\)

Thay \(x=2\) vào \(y=f\left(x\right)=\sqrt{x}\), ta được;

\(f\left(2\right)=\sqrt{2}>1\)

=>B(2;1) không thuộc đồ thị hàm số \(y=f\left(x\right)=\sqrt{x}\)

Thay \(x=8\) vào \(y=\sqrt{x}\), ta được:

\(y=\sqrt{8}=2\sqrt{2}\)

=>\(C\left(8;2\sqrt{2}\right)\) thuộc đồ thị hàm số \(y=\sqrt{x}\)

Thay \(x=4-2\sqrt{3}\) vào \(y=\sqrt{x}\), ta được:

\(y=\sqrt{4-2\sqrt{3}}=\sqrt{3-2\cdot\sqrt{3}\cdot1+1}\)

\(=\sqrt{\left(\sqrt{3}-1\right)^2}=\left|\sqrt{3}-1\right|=\sqrt{3}-1< >1-\sqrt{3}\)

=>\(D\left(4-2\sqrt{3};1-\sqrt{3}\right)\) không thuộc đồ thị hàm số \(y=f\left(x\right)=\sqrt{x}\)

Thay \(x=6+2\sqrt{5}\) vào \(y=f\left(x\right)=\sqrt{x}\), ta được:

\(f\left(6+2\sqrt{5}\right)=\sqrt{6+2\sqrt{5}}=\sqrt{\left(\sqrt{5}+1\right)^2}\)

\(=\left|\sqrt{5}+1\right|=\sqrt{5}+1\)

vậy: \(E\left(6+2\sqrt{5};1+\sqrt{5}\right)\) thuộc đồ thị hàm số \(y=f\left(x\right)=\sqrt{x}\)

NV
14 tháng 4 2022

Với mọi a;b;c không âm ta có:

\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)

\(\Leftrightarrow3a^2+3b^2+3c^2\ge a^2+b^2+c^2+2ab+2bc+2ca\)

\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)

\(\Leftrightarrow a+b+c\le\sqrt{3\left(a^2+b^2+c^2\right)}\)

Áp dụng:

a.

\(VT\le\sqrt{3\left(x+7+y+7+z+7\right)}=\sqrt{3\left(6+21\right)}=9\)

Dấu "=" xảy ra khi \(x=y=z=2\)

b.

\(VT\le\sqrt{3\left(3x+2y+3y+2z+3z+2x\right)}=\sqrt{15\left(x+y+z\right)}=\sqrt{15.6}=3\sqrt{10}\)

Dấu "=" xảy ra khi \(x=y=z=2\)

c.

\(VT\le\sqrt{3\left(2x+5+2y+5+2z+5\right)}=\sqrt{3\left(2.6+15\right)}=9\)

Dấu "=" xảy ra khi \(x=y=z=2\)

HQ
Hà Quang Minh
Giáo viên
12 tháng 1

a)      Đa thức có 5 hạng tử là: \({x^2}y; - 3xy;5{x^2}{y^2};0,5x; - 4\)

Xét hạng tử \({x^2}y\) có hệ số là 1, bậc của x là 2, bậc của y là 1 => bậc là 2+1=3.

Xét hạng tử \( - 3xy\) có hệ số là -3,  bậc của x là 1, bậc của y là 1  => bậc là 1+1=2.

Xét hạng tử \(5{x^2}{y^2}\) có hệ số là 5, bậc của x là 2, bậc của y là 2  => bậc là 2+2=4.

Xét hạng tử \(0,5x\) có hệ số là 0,5, bậc của x là 1 => bậc là 1.

Xét hạng tử -4 có hệ số là -4, bậc là 0.

b)      Đa thức có 4 hạng tử là \(x\sqrt 2 ; - 2x{y^3};{y^3}; - 7{x^3}y\)

Xét hạng tử \(x\sqrt 2 \) có hệ số là \(\sqrt 2 \), bậc của x là 1 => bậc là 1.

Xét hạng tử \( - 2x{y^3}\) có hệ số là -2, bậc của x là 1, bậc của y là 3  => bậc là 1+3=4.

Xét hạng tử \({y^3}\) có hệ số là 1, bậc của y là 3  => bậc là 3.

Xét hạng tử \( - 7{x^3}y\) có hệ số là -7, bậc của x là 3, bậc của y là 1  => bậc là 3+1=4.

Tọa độ giao điểm của hai đường thẳng y=x-7 và y=-4x+3 là:

\(\left\{{}\begin{matrix}x-7=-4x+3\\y=x-7\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x+4x=7+3\\y=x-7\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}5x=10\\y=x-7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=2-7=-5\end{matrix}\right.\)

Thay x=2 và y=-5 vào y=ax+b, ta được:

a*2+b=-5

=>2a+b=-5(1)

thay x=-1 và y=-3 vào y=ax+b, ta được:

a*(-1)+b=-3

=>-a+b=-3(2)

Từ (1),(2) ta có hệ phương trình:

\(\left\{{}\begin{matrix}2a+b=-5\\-a+b=-3\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}3a=-2\\a-b=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{2}{3}\\b=a-3=-\dfrac{2}{3}-3=-\dfrac{11}{3}\end{matrix}\right.\)

Vậy: (d): \(y=-\dfrac{2}{3}x-\dfrac{11}{3}\)

NV
26 tháng 3 2022

Biểu thức này chỉ có GTLN, ko có GTNN