Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
<=> ax3- 2acx2 + a2bcx + bx2 - 2bxc + ab2c = x3 + 6x2 + 4x - 8
<=> ax3 + ( 2ac + b )x2 + ( a2bc - 2bc )x + ab2c = x3 + 6x2 + 4x - 8
Đồng nhất hệ số ta có : \(\hept{\begin{cases}a=1\\2ac+b=6\\a^2bc-2bc=4\end{cases}};ab^2c=-8\)đến đây tịt :v
(ax + b)(x2 - 2cx + abc)
= ax3 - 2acx2 + xa2bc + bx2 - 2bcx + ab2c
= ax3 + x2(b - 2ac) + x(a2bc - 2bc) + ab2c = x3 + 6x2 + 4x - 8
Đồng nhất hệ số
=> a = 1 ; b - 2ac = 6 ; a2bc - 2bc = 4 ; ab2c = -8
Khi đó b - 2c = 6 ; -bc = 4 ; b2c = -8
=> b = 2 ; c = -2
Vậy a = 1 ; b = 2 ; c = -2
Xin mọi ngườ hãy giúp tui ai trả lời nhanh nất tui sẽ h cho làm ơn tui đang cần gấp
pp U.C.T @ nỗi ám ảnh là đây
\(RHS=x^4+\left(c+1\right)x^3+\left(d+c-2\right)x^2+\left(d-2c\right)x-2d\)
Sử dụng pp U.C.T ta có hệ sau : \(\hept{\begin{cases}c+1=1\\d+c-2=-1\\d-2c=a-and--2d=b\end{cases}< =>\hept{\begin{cases}c=0\\d=1\\a=1andb=-2\end{cases}}}\)
câu b để tí nx mình làm nốt
= \(ax^3+acx^2+ax+bx^2+bcx+b\) =>\(\hept{\begin{cases}a=1\\ac+b=0\\a+bc=2;b=2\end{cases}}=>\hept{\begin{cases}a=1\\b=2\\c=-2\end{cases}}\)
( ax + b )( x2 + cx + 1 ) = x3 - 3x + 2
<=> ax( x2 + cx + 1 ) + b( x2 + cx + 1 ) = x3 - 3x + 2
<=> ax3 + acx2 + ax + bx2 + bcx + b = x3 - 3x + 2
<=> ax3 + ( ac + b )x2 + ( a + bc )x + b = x3 - 3x + 2
<=> \(\hept{\begin{cases}a=1\\ac+b=0\\a+bc=-3\end{cases}}\)và b = 2
<=> \(\hept{\begin{cases}a=1\\b=2\\c=-2\end{cases}}\)
Vì f(x) chia hết cho (x-1)(x+2) nên f(x) = (x-1)(x+2).Q(x)
hay \(f\left(x\right)=2x^4+ax^3+3x^2+4x+b=\left(x-1\right)\left(x+2\right).Q\left(x\right)\)
Suy ra : \(f\left(1\right)=2+a+3+4+b=0\Rightarrow a+b=-9\left(1\right)\)
\(f\left(-2\right)=32-8a+12-8+b=0\Rightarrow-8a+b=-36\left(2\right)\)
Từ (1) và (2) có hệ \(\begin{cases}a+b=-9\\-8a+b=-36\end{cases}\) \(\Leftrightarrow\begin{cases}a=3\\b=-12\end{cases}\)
Đa thức \(\left(x-1\right)\left(x+2\right)\)có nghiệm \(\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x+2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}\)
Vậy 1 và -2 là hai nghiệm của đa thức (x-1)(x+2)
Để đa thức \(f\left(x\right)=2x^4+ax^3+3x^2+4x+b\)chia hết cho (x-1)(x+2) thì 1 và -2 là cũng hai nghiệm của đa thức
\(f\left(x\right)=2x^4+ax^3+3x^2+4x+b\)
Nếu x = -1 thì \(f\left(-1\right)=2-a+3-4+b=0\)
\(\Leftrightarrow a-b=1\)(1)
Nếu x = 2 thì \(f\left(2\right)=32+8a+12+8+b=0\)
\(\Leftrightarrow52+8a+b=0\)
\(\Leftrightarrow8a+b=-52\)(2)
Lấy (1) + (2), ta được: \(9a=-51\Leftrightarrow a=\frac{-17}{3}\)
\(\Rightarrow b=\frac{-17}{3}-1=\frac{-20}{3}\)
Vậy \(a=\frac{-17}{3};b=\frac{-20}{3}\)