Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tìm hệ số a, b, của đa thức G(x)=ax^2+bx+c+3 biết G(1)=2013 và a, b, c theo thứ tự tỉ lệ với 3, 2, 1
vì \(a\overset{.}{,}b\overset{.}{,}c\) tỉ lệ \(3\overset{.}{,}2\overset{.}{,}1\) \(\Rightarrow\) \(P\left(x\right)ax^2+bx+c+2=3cx^2+2cx+c+2\)
ta có : \(P\left(1\right)=2013\Rightarrow3c+2c+c+2=2013\) \(\Rightarrow c=\dfrac{2011}{6}\)
với \(c=\dfrac{2011}{6}\Rightarrow b=\dfrac{2011}{3}\overset{.}{,}a=\dfrac{2011}{2}\)
vậy \(c=\dfrac{2011}{6}\overset{.}{,}b=\dfrac{2011}{3}\overset{.}{,}a=\dfrac{2011}{2}\)
\(1/\)
Để \(\frac{21n+4}{14n+3}\)là phân số tối giản
Suy ra: ƯCLN\(\left(21n+4;14n+3\right)=1\)
Gọi ƯCLN\(\left(21n+4;14n+3\right)=a\)
Ta có:
\(21n+4⋮a\)
\(\Rightarrow\left(21n+4\right).2=42n+8⋮a\)(1)
\(14n+3⋮a\)
\(\Rightarrow\left(14n+3\right).3=42n+9⋮a\)(2)
Từ (1) và (2) suy ra:
\((42n+9)-(42n+8)⋮a\)
\(\Rightarrow1⋮a\)
\(\Rightarrow a\inƯ\left(1\right)\)
\(\Rightarrow a=1\)hoặc\(a=-1\)
\(a\inƯCLN\left(1\right)\)\(\Rightarrow a=1\)
Vậy \(\frac{21n+4}{14n+3}\)là phân số tối giản
1.a) Theo đề bài,ta có: \(f\left(-1\right)=1\Rightarrow-a+b=1\)
và \(f\left(1\right)=-1\Rightarrow a+b=-1\)
Cộng theo vế suy ra: \(2b=0\Rightarrow b=0\)
Khi đó: \(f\left(-1\right)=1=-a\Rightarrow a=-1\)
Suy ra \(ax+b=-x+b\)
Vậy ...