K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
31 tháng 3 2021

Đặt \(f\left(1\right)=d\)

\(f\left(n+1\right)=af^2\left(n\right)+bf\left(n\right)+\dfrac{b^2}{4a}-\dfrac{b}{2a}\)

\(\Leftrightarrow f\left(n+1\right)+\dfrac{b}{2a}=a\left[f\left(n\right)+\dfrac{b}{2a}\right]^2\)

Đặt \(f\left(n\right)+\dfrac{b}{2a}=g\left(n\right)\Rightarrow\left\{{}\begin{matrix}g\left(1\right)=d+\dfrac{b}{2a}\\g\left(n+1\right)=a.g^2\left(n\right)\end{matrix}\right.\)

\(\Rightarrow g\left(n\right)=a.g^2\left(n-1\right)=a\left[a.g^2\left(n-2\right)\right]^2=a^{2^2-1}.g^{2^2}\left(n-2\right)=...=a^{2^{n-1}-1}.\left[g\left(1\right)\right]^{2^{n-1}}\)

\(\Rightarrow g\left(n\right)=a^{2^{n-1}-1}.\left(d+\dfrac{b}{2a}\right)^{2^{n-1}}\)

\(\Rightarrow f\left(n\right)=a^{2^{n-1}-1}.\left(d+\dfrac{b}{2a}\right)^{2^{n-1}}-\dfrac{b}{2a}\) (1)

Sau đó kiểm tra lại công thức (1) bằng quy nạp là được