K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2017

Theo bài ra :

\(\left(x+5\right)\left(x^2-1\right)\left(3-x\right)>0\)

<=> \(\left(x+5\right)\left(x-1\right)\left(x+1\right)\left(3-x\right)>0\)

Đặt \(\left(x+5\right)\left(x-1\right)\left(x+1\right)\left(3-x\right)=A\)

Ta có bảng xét dấu :

\(-\infty\) -5 -1 1 3 \(+\infty\)
(x+5) - 0 + + + +
x2-1 + + 0 - 0 + +
3-x + + + + 0 -
A - (loại) 0 (loại) +(t.m) 0(loại) -(loại) 0(loại) +(t.m) 0(loại) -(loại)

Từ bảng xét dấu trên suy ra :

\(A>0\Rightarrow\left[{}\begin{matrix}-5< x< -1\\1< x< 3\end{matrix}\right.\)

23 tháng 6 2017

\(\infty\) nghĩa là gì vậy bạn

12 tháng 11 2016

\(A=\left|x+1\right|+5\)

\(\Rightarrow\left|x+1\right|+5\ge5\)

\(\Rightarrow\left|x+1\right|\ge0\)

\(\Rightarrow x+1\ge0\)

\(\Rightarrow x\ge-1\)

Mà A đạt GTNN, suy ra \(\left|x+1\right|\) nhỏ nhất

\(\Rightarrow x=-1\)

Thay \(x=-1\) vào biểu thức ta có:

\(A=\left|-1+1\right|+5=0+5=5\)

Vậy: \(Min_A=5\)

 

 

12 tháng 11 2016

\(B=\left(x-1\right)^2=\left|y-3\right|+2\)

\(B=a^2-2a1+1^2=\left|y-3\right|+2\)

\(B=a^2-2a1+1=\left|y-3\right|+2\)

\(\Rightarrow a^2-2a1+1+2=\left|y-3\right|\)

\(\Rightarrow a\left(a-2\right)+1+2=\left|y-3\right|\)

\(\Rightarrow a\left(a-2\right)+3=\left|y-3\right|\)

\(\Rightarrow\left[\begin{array}{nghiempt}a\left(a-2\right)+3=y-3\\a\left(a-2\right)+3=-y-3\end{array}\right.\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}a\left(a-2\right)=y-3-3\\a\left(a-2\right)=-y-3-3\end{array}\right.\)

\(\Rightarrow\left[\begin{array}{nghiempt}a\left(a-2\right)=y-6\\a\left(a-2\right)=-y-6\end{array}\right.\)

\(\Rightarrow a^2-2a=-y-6\)

\(\Rightarrow a^2-2a+y=-6\)

\(\Rightarrow a\left(a-2\right)+y=-6\) (loại do âm)

\(a\left(a-2\right)=y-6\)

\(\Rightarrow-y+6=-a\left(a-2\right)\)

\(\Rightarrow6=y-a\left(a-2\right)\) (nhận)

Vậy: \(Min_B=6\)

 

 

 

18 tháng 3 2017

(2x+5)(1-2x)>=0

Lập bảng xét dấu ta đc:

TXĐ: D= ngoặc vuông -5/2 ; 1/2 ngoặc vuông

a:b=\(\frac{2}{7}\)=>a=\(\frac{2}{7}\)*b

Ta có \(\frac{a+35}{b}\)=\(\frac{11}{14}\)

<=>(a+35)*14=11*b

<=>14a+490=11b

<=>14*\(\frac{2}{7}\)*b+490=11b

<=>4*b+490=11b

=>           490=11b-4b

=>           490=7b

=>          b=490:7

=>          b=70

=>a=70*\(\frac{2}{7}\)

=>a=20

Vậy a=20;b=70

\(A=\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}=\sqrt{\left(-\dfrac{5}{\sqrt{3}}\right)^2-4\cdot\dfrac{-\sqrt{2}}{\sqrt{3}}}=\sqrt{\dfrac{25+4\sqrt{6}}{3}}\)

27 tháng 7 2017

Vì A\(\cap\)B nên cả A và B đều chứa A,B={0;1;2;3;4}

Vì A\B nên {-3;-2} chỉ \(\in\)A mà \(\notin\) B

Vì B\A nên {6;9;10} chỉ \(\in\) B mà \(\notin\) A

Vậy: A={-3;-2;0;1;2;3;4}

B={0;1;2;3;4;6;9;10}

3 tháng 6 2017

C1:

\(A=\dfrac{10^{50}+2}{10^{50}-1}=\dfrac{10^{50}-1}{10^{50}-1}+\dfrac{3}{10^{50}-1}=1+\dfrac{3}{10^{50}-1}\\ B=\dfrac{10^{50}}{10^{50}-3}=\dfrac{10^{50}-3}{10^{50}-3}+\dfrac{3}{10^{50}-3}=1+\dfrac{3}{10^{50}-3}\\ \text{Vì }10^{50}-3< 10^{50}-1\Rightarrow\dfrac{3}{10^{50}-3}>\dfrac{3}{10^{50}-1}\Rightarrow1+\dfrac{3}{10^{50}-3}>1+\dfrac{3}{10^{50}-1}\Leftrightarrow B>A\)

Vậy \(B>A\)

C2: Áp dụng \(\dfrac{a}{b}>1\Rightarrow\dfrac{a}{b}>\dfrac{a+n}{b+n}\left(n>0\right)\)

Dễ thấy

\(B=\dfrac{10^{50}}{10^{50}-3}>1\\ \Rightarrow B=\dfrac{10^{50}}{10^{50}-3}>\dfrac{10^{50}+2}{10^{50}-3+2}=\dfrac{10^{50}+2}{10^{50}-1}=A\)

Vậy \(B>A\)

30 tháng 4 2016

áp dụng BĐT côsi ta được x4+y4>= 2x2y2

cộng x4+y4 vào hai vế ta được x4+y4>=\(\frac{1}{2}\)(x2+y2)2

tương tự x2+y2>=\(\frac{1}{2}\)(x+y)2

suy ra x4+y4>=\(\frac{\left(x+y\right)^4}{8}\)

25 tháng 9 2016

a)(x2-5x+6)(x2-5x+2)-5

Đặt \(x^2-5x+2=t\) ta được:

\(\left(t+4\right)t-16\)\(=t^2+4t-5\)

\(=t^2+5t-t-5\)

\(=t\left(t+5\right)-\left(t+5\right)\)

\(=\left(t-1\right)\left(t+5\right)\)\(=\left(x^2-5x+2-1\right)\left(x^2-5x+2+5\right)\)

\(=\left(x^2-5x+1\right)\left(x^2-5x+7\right)\)

25 tháng 9 2016

b) (x2+8x-5)(x2+8x+1)-16

Đặt \(t=x^2+8x-5\) ta đc:

\(t\left(t+6\right)-16\)\(=t^2+6t-16\)

\(=t^2+8t-2t-16\)

\(=t\left(t+8\right)-2\left(t+8\right)\)

\(=\left(t-2\right)\left(t+8\right)\)\(=\left(x^2+8x-5-2\right)\left(x^2+8x-5+8\right)\)

\(=\left(x^2+8x-7\right)\left(x^2+8x+3\right)\)