K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 6 2016

Nếu xy = 10 thì xy phải là : 1x10 , 5x2 . 

Thỏa mãm x - y = 3 thì phải 5x2 vì 5-2=3

19 tháng 6 2016

nếu xy = 10 thì chỉ có 1x10 hoặc 5x2

thỏa mãn x-y=3 thì chỉ có 5x2 vì 5-2=3

19 tháng 6 2016

x2(x+3)+y2(y+5)-(x+y)(x2-xy+y2)=0

x2(x+3)+y2(y+5)-(x3+y3)=0

x3+3x2+y3+5y2-x3-y3=0

3x2+5y2=0

Vì \(\hept{\begin{cases}x^2\ge0\\y^2\ge0\end{cases}\Rightarrow\hept{\begin{cases}3x^2\ge0\\5y^2\ge0\end{cases}}\Rightarrow3x^2+5y^2\ge0}\)

Dấu "=" xảy ra khi 3x2=0 và 5y2=0

+)3x2=0=>x2=0=>x=0

+)5y2=0=>y2=0=>y=0

Vậy x=y=0

19 tháng 6 2016

Sau khi rút gọn thì được kết quả

\(5y^2+3x^2=0\)

Vì các số hạng đều lớn hơn hoặc bằng 0 Nên buộc x=y=0 rồi

x2.(x+3)+y2(y+5)-(x+y)(x2-xy+y2)=0

x3+3x2+y3+5y2-(x3+y3)=0

x3+3x2+y3+5y2-x3-y3=0

3x2+5y2=0

làm đến đây thì tạch!!!!!!!!!!!!

19 tháng 6 2016

x2(x+3)+y2(y+5)-(x+y)(x2-xy+y2)=0

x2(x+3)+y2(y+5)-(x3+y3)=0

x3+3x2+y3+5y2-x3-y3=0

3x2+5y2=0

tịt luôn!!!!!!!

9 tháng 7 2019

mình hỏi vs 3y^2 là 3xy^2 phải không hay chỉ là 3y^2

9 tháng 7 2019

Bài 2: \(\hept{\begin{cases}x-y=-3\\x=\frac{10}{y}\end{cases}\Rightarrow}\)\(\frac{10}{y}-y=-3\Leftrightarrow y^2-3y-10=0\Leftrightarrow\orbr{\begin{cases}y=5\Rightarrow x=2\\y=-2\Rightarrow x=-5\end{cases}}\)

*Với x=2;y=5 =>P=-102

*Với x=-5;y=-2 =>P=45

18 tháng 3 2023

\(A=\dfrac{2\left(x^3+y^3\right)}{\left(x^4+y^2\right)\left(x^2+y^4\right)}=2.\dfrac{\left(x^3+y^3\right)}{x^4y^4+x^2y^2+x^6+y^6}\)

\(=2.\dfrac{\left(x^3+y^3\right)}{1+1+x^6+y^6}=2.\dfrac{x^3+y^3}{x^6+y^6+2x^3y^3}=2.\dfrac{x^3+y^3}{\left(x^3+y^3\right)^2}=\dfrac{2}{x^3+y^3}\left(1\right)\)

Áp dụng bất đẳng thức Cauchy ta có:

\(x^3+y^3+1\ge3\sqrt{xy.1}=3\)

\(\Rightarrow x^3+y^3\ge2\Rightarrow\dfrac{2}{x^3+y^3}\le1\left(2\right)\)

\(\left(1\right),\left(2\right)\Rightarrow A\le1\)

Dấu "=" xảy ra khi x=y=1.

Vậy MaxA là 1, đạt được khi x=y=1.

 

 

19 tháng 3 2023

Thanks!

25 tháng 12 2021

\(Q=x^2+y^2=\left(x+y\right)^2-2xy=\left(-1\right)^2-2\left(-6\right)=13\\ P=x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)\\ P=\left(-1\right)^3-3\left(-6\right)\left(-1\right)=-1-18=-19\)

25 tháng 12 2021

\(P=\left(x+y\right)^2-2xy=\left(-1\right)^2-2\cdot\left(-6\right)=1+12=13\)