\(\dfrac{x}{2}=\dfrac{y}{5}\) và <...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 4 2017

Đặt k = . Ta có x = 2k, y = 5k

Từ xy=10. suy ra 2k.5k = 10 => 10 k^{2} = 10 => k^{2} = 1 => k = ± 1

Với k = 1 ta được = 1 suy ra x = 2, y = 5

Với k = -1 ta được = -1 suy ra x = -2, y = -5

8 tháng 7 2017

Gọi \(\dfrac{x}{2}=\dfrac{y}{5}=k\)

Với \(\dfrac{x}{2}=k\Rightarrow x=2k\); \(\dfrac{y}{5}=k\Rightarrow y=5k\)

Theo đề bài,ta còn có:

\(xy=10\)

hay 2k.5k=10

10k2 =10

\(\Rightarrow k=\pm1\)

Với k=1 \(\Rightarrow\dfrac{x}{2}=\dfrac{y}{5}=1\Rightarrow x=2;y=5\)

Với k=-1 \(\Rightarrow\dfrac{x}{2}=\dfrac{y}{5}=-1\Rightarrow x=-2;y=-5\)

10 tháng 6 2017

\(x=-6;x=-15.\)

17 tháng 7 2017

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{2}\)=\(\dfrac{y}{5}\)=\(\dfrac{x+y}{2+5}\)=\(\dfrac{-21}{7}\)=-3

=>\(\dfrac{x}{2}\)=\(\dfrac{y}{5}\)=5x=2y

=>x=5.-3=-15

=>y=2.-3=-6

Vậy x=-15;y=6

21 tháng 7 2017

\(\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}\)và x + y -z = 10 

\(\frac{x}{2}=\frac{y}{3}=\frac{1}{4}.\frac{x}{2}=\frac{1}{4}.\frac{y}{3}\)\(=\frac{x}{8}=\frac{y}{12}\)

\(\frac{y}{4}=\frac{z}{5}=\frac{1}{3}.\frac{y}{4}=\frac{1}{3}.\frac{z}{5}=\frac{y}{12}=\frac{z}{15}\)

\(\Leftrightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)và x + y - z = 10 

Theo tính chất dãy tỉ số bằng nhau: 

\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)

\(\frac{x}{8}=2\Rightarrow x=2.8=16\)

*  \(\frac{y}{12}=2\Rightarrow y=2.12=24\)

\(\frac{z}{5}=2\Rightarrow z=2.5=10\)

Vậy...

21 tháng 7 2017

Ý mk nhầm chút xíu nhé! Cko sorry! 

\(\frac{z}{15}=2\Rightarrow z=2.15=30\)

... :( Xl

16 tháng 7 2016

2). Ta có: x/2=y/3 => x/8 = y/12

                y/4=z/5 => y/12 = z/15

=> x/2=y/12=z/15 và x+y-z=10

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{x}{2}\)=\(\frac{y}{12}\)=\(\frac{z}{15}\)=\(\frac{x+y-z}{2+12-15}\)=\(\frac{10}{-1}\)= -10

=> x=2.(-10)=-20

     y=12.(-10)=-120

     z=15.(-10)=-150

Vậy x=-20; y=-120;z=-150

3). Đặt \(\frac{x}{2}\)=\(\frac{y}{5}\)= k

=> x=2k

     y=5k

Ta có xy = 10

       2k.5k =10

       10. k2=10

       k2      = 10 :10=1

=> k =1; k=-1

+) k = 1

=> x=2.1=2

     y=5.1=5

+) k = -1

=> x= 2.(-1) =-2

     y=5.(-1) = -5

Vậy x=2;y=5 hoặc x=-2;y=-5

16 tháng 7 2016

Câu 2:

Ta có \(\frac{x}{2}=\frac{y}{3}=\frac{x}{8}=\frac{y}{12}\)(1)

           \(\frac{y}{4}=\frac{z}{5}=\frac{y}{12}=\frac{z}{15}\)(2)

    Từ (1) và (2) suy ra:\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)

Áp dụng dãy tỉ số bằng nhau ta có:

    \(\Rightarrow\)\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)

\(\Rightarrow\begin{cases}\frac{x}{8}=2\\\frac{y}{12}=2\\\frac{z}{15}=2\end{cases}\)\(\Rightarrow\begin{cases}x=16\\y=24\\z=30\end{cases}\)

Vậy x=16;y=24;z=30

23 tháng 9 2019

Ta có

\(\frac{x}{2}=\frac{y}{5}=k\Rightarrow\hept{\begin{cases}x=2k\\y=5k\end{cases}}\)

\(\Rightarrow x\cdot y=2k\cdot5k=10\)

\(\Rightarrow k^2\cdot10=10\)

\(\Rightarrow k^2=1\)

\(\Rightarrow k^2=1^2\)

\(\Rightarrow k=1\)

Thay K=1 vào x;y ta có

\(\hept{\begin{cases}x=2k=2\\y=5k=5\end{cases}}\)

ti ck nha

23 tháng 9 2019

\(\frac{x}{2}=\frac{y}{5}\Rightarrow\left(\frac{x}{2}\right)^2=\left(\frac{y}{5}\right)^2=\frac{x}{2}.\frac{y}{5}=\frac{x.y}{2.5}=\frac{10}{10}=1\)
\(\Rightarrow\hept{\begin{cases}x=2.1=2\\y=5.1=5\end{cases}}\)
Vậy x = 2, y = 5
P/s: Cô mình có dạy tính chất a = b => a2 = b2 = ab nên mình áp dụng theo 

16 tháng 12 2017

Ta có \(\frac{x+5}{2}=\frac{y-2}{3}\)và \(x-y=-10\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{x+5}{2}=\frac{y-2}{3}=\frac{x+5-y-2}{2-3}=\frac{x-y+5-2}{2-3}=\frac{-10+5-2}{2-3}=\frac{-7}{-1}=7\)

=> \(\frac{x+5}{2}=7\)=> x + 5 = 14 => x = 9

và \(\frac{y-2}{3}=7\)=> y - 2 = 21 => y = 23

21 tháng 7 2015

\(dat:\frac{x}{2}=\frac{y}{5}=k\)

x=2k   ;  y=5k

x.y=10k2

10 = 10k2

k= 1

k  = +-1

Voi : k=1 = > x=1.2=2 ; y=5.1=5

voi : k=-1 => x=-1.2=-2 ; y=-1.5=-5

21 tháng 7 2015

\(\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{x}{2}=\frac{4y}{12};\frac{3y}{12}=\frac{z}{5}\Rightarrow\frac{x}{8}=\frac{y}{12};\frac{y}{12}=\frac{z}{15}\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)

Ap dung tinh chat day ti so bang nhau ta co : 

\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)

Suy ra  : \(\frac{x}{8}=2\Rightarrow x=16;\frac{y}{12}=2\Rightarrow y=2.12=24;\frac{z}{15}=2\Rightarrow z=2.15=30\)

nhieu qua lam ko het

12 tháng 6 2017

Giải:

Đặt \(\dfrac{x}{2}=\dfrac{y}{5}=k\Rightarrow\left\{{}\begin{matrix}x=2k\\y=5k\end{matrix}\right.\)

Ta có: \(xy=10\)

\(\Rightarrow10k^2=10\)

\(\Rightarrow k^2=1\)

\(\Rightarrow k=\pm1\)

+) \(k=1\Rightarrow x=2,y=5\)

+) \(k=-1\Rightarrow x=-2;y=-5\)

Vậy...

12 tháng 6 2017

Nhân cả hai vế của tỉ lệ thức \(\dfrac{x}{2}\) = \(\dfrac{y}{5}\) với x (x 0), ta được: bai62Thay xy = 10, ta được: \(\dfrac{x^2}{2}\) = \(\dfrac{10}{5}\)= 2 ⇔x2 = 4. Do đó x = 2 hoặc x = -2
Khi x = 2 thì y = 5
Khi x = -2 thì y = -5

18 tháng 4 2017

Lời giải:

Theo tính chất của dãy tỉ số bằng nhau ta có:

Do đó

Vậy x=6, y =10

18 tháng 4 2017

Theo tính chất của dãy tỉ số bằng nhau ta có:

Do đó

Vậy x=6, y =10

16 tháng 9 2017

Nhờ các bạn trả lời giúp mik

16 tháng 9 2017

1/ a, Ta có :

\(x-2y+3z=35\)

\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}\)

\(\Leftrightarrow\dfrac{x}{3}=\dfrac{2y}{8}=\dfrac{3z}{15}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\dfrac{x}{3}=\dfrac{2y}{8}=\dfrac{3z}{15}=\dfrac{x-2y+3z}{3-8+15}=\dfrac{35}{10}=\dfrac{7}{2}\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{3}=\dfrac{7}{2}\Leftrightarrow x=\dfrac{21}{2}\\\dfrac{x}{4}=\dfrac{7}{2}\Leftrightarrow y=14\\\dfrac{z}{5}=\dfrac{7}{2}\Leftrightarrow z=\dfrac{35}{2}\end{matrix}\right.\)

Vậy ..