Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}\)và x + y -z = 10
\(\frac{x}{2}=\frac{y}{3}=\frac{1}{4}.\frac{x}{2}=\frac{1}{4}.\frac{y}{3}\)\(=\frac{x}{8}=\frac{y}{12}\)
\(\frac{y}{4}=\frac{z}{5}=\frac{1}{3}.\frac{y}{4}=\frac{1}{3}.\frac{z}{5}=\frac{y}{12}=\frac{z}{15}\)
\(\Leftrightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)và x + y - z = 10
Theo tính chất dãy tỉ số bằng nhau:
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)
* \(\frac{x}{8}=2\Rightarrow x=2.8=16\)
* \(\frac{y}{12}=2\Rightarrow y=2.12=24\)
* \(\frac{z}{5}=2\Rightarrow z=2.5=10\)
Vậy...
Ý mk nhầm chút xíu nhé! Cko sorry!
* \(\frac{z}{15}=2\Rightarrow z=2.15=30\)
... :( Xl
Ta có: \(\frac{x}{3}=\frac{y}{5}=\frac{x+y}{3+5}=\frac{16}{8}=2\)
\(\Rightarrow x=2.3=6\)
\(y=2.5=10\)
Vậy x = 6 và y = 10
Ta có : \(\frac{x}{3}=\frac{y}{5}\)
Áp dụng dãy tỉ số bằng nhau :
Ta có : \(\frac{x}{3}=\frac{y}{5}=\frac{z+y}{3+5}=\frac{16}{8}=2\)
\(\Rightarrow\frac{x}{3}=3.2=6\)
\(\Rightarrow\frac{x}{5}=5.2=10\)
Vậy x = 6 và y = 10
a) Ta có : \(\frac{x}{y}=\frac{6}{5}\) => \(\frac{x}{6}=\frac{y}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{6}=\frac{y}{5}=\frac{x+y}{6+5}=\frac{121}{11}=11\)
=> x = 11.6 = 66,y = 11.5 = 55
b) 4x = 5y => \(\frac{x}{5}=\frac{y}{4}\)=> \(\frac{2x}{10}=\frac{5y}{20}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{2x}{10}=\frac{5y}{20}=\frac{2x-5y}{10-20}=\frac{40}{-10}=-4\)
=> x = (-4).5 = -20 , y = (-4).4 = -16
c) Đặt \(\frac{x}{3}=\frac{y}{16}=t\Rightarrow\hept{\begin{cases}x=3t\\y=16t\end{cases}}\)
=> xy = 3t.16t = 48t2
=> 48t2 = 192
=> t2 = 4
=> t = \(\pm\)2
Với t = 2 thì x = 3.2 = 6,y = 16.2 = 32
Với t = -2 thì x = -6,y = -32
d) \(\frac{x}{-3}=\frac{y}{7}\)
=> \(\frac{x^2}{9}=\frac{y^2}{49}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x^2}{9}=\frac{y^2}{49}=\frac{x^2-y^2}{9-49}=\frac{-360}{-40}=9\)
=> x2 = 9.9 = 81 => x = \(\pm\)9
y2 = 9.49 = 441 => y = \(\pm\)21
Câu e,f tương tự
a, \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{5x}{15}=\frac{2y}{8}=\frac{5x-2y}{15-8}=\frac{28}{7}=4\)
=> x = 4.3 = 12
y = 4.4 = 16
b, \(x:2=y:\left(-5\right)\Rightarrow\frac{x}{2}=\frac{y}{-5}=\frac{x-y}{2-\left(-5\right)}=\frac{-7}{7}=-1\)
=> x = (-1).2 = -2
y = (-1)(-5) = 5
c, \(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{12}\)
\(\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\)
\(\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-10}=\frac{10}{10}=1\)
=> x = 8
y =12
z = 15
a) Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{3}=\frac{y}{7}=\frac{x+y}{3+7}=\frac{20}{10}=2\)
Suy ra
x = 2 . 3 = 6
y = 2 . 7 = 14
b) Áp dụng tính chất dãy tĩ số bằng nhau
\(\frac{x}{5}=\frac{y}{2}=\frac{x-y}{5-2}=\frac{6}{3}=2\)
Suy ra:
x = 2 . 5 = 10
y = 2 . 2 = 4
a)Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{3}=\frac{y}{7}=\frac{x+y}{10}=\frac{20}{10}=2\)
\(\Rightarrow\begin{cases}x=2.3=6\\y=7.2=14\end{cases}\)
b)Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{5}=\frac{y}{2}=\frac{x-y}{3}=\frac{6}{3}=2\)
\(\Rightarrow\begin{cases}x=5.2=10\\y=2.2=4\end{cases}\)
áp dụng TCDTSBN ta có :
a) \(\frac{x}{5}=\frac{y}{3}=\frac{x+y}{5+3}=\frac{8}{8}=1\)
x/5=1 => x=5
y/3=1 => y=3
b) \(\frac{x}{2}=\frac{y}{5}=\frac{x}{2}-\frac{2y}{2.5}=\frac{x-2y}{2-10}=\frac{-16}{-8}=2\)
x/2=2 => x=4
y/5=2 => y=10
c) \(\frac{x}{5}=\frac{y}{7}=\frac{z}{2}=\frac{x+y-z}{5+7-2}=\frac{40}{10}=4\)
x/5=4 =>x=20
y/7=4 =>y=28
z/2=4 => z=8
Áp dung tính chất dãy tỉ số bằng nhau,ta có:
X/5=y/3=x+y/5+3=8/8=1
đây nhé
Áp dụng tính chất dãy tỉ số bằng nhau, ta có :
\(\frac{x}{3}=\frac{y}{5}=\frac{x+y}{3+5}\)\(=\frac{16}{8}=2\)
+) \(\frac{x}{3}=2\Rightarrow x=6\)
+)\(\frac{y}{5}=2\Rightarrow y=10\)
Vậy x = 6; y =10