Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(\Rightarrow\left(\frac{305}{2}-\frac{1187}{8}\right):\frac{1}{5}=x:\frac{3}{10}\)
\(\Rightarrow\frac{33}{8}.5=x:\frac{3}{10}\)
\(\Rightarrow x=\frac{33}{8}.5.\frac{3}{10}\)
\(\Rightarrow x=\frac{99}{16}\)
a)Ta có:\(\frac{x}{3}=\frac{y}{4}=\frac{2x}{6}=\frac{3y}{12}\)
Áp dụng dãy tỉ số bằng nhau ta có:
\(\Rightarrow\frac{2x}{6}=\frac{3y}{12}=\frac{2x-3y}{6-12}=\frac{-216}{-6}=36\)
\(\Rightarrow\)\(\begin{cases}\frac{2x}{6}=36\\\frac{3y}{12}=36\end{cases}\)\(\Rightarrow\)\(\begin{cases}2x=6\\3y=3\end{cases}\)\(\Rightarrow\begin{cases}x=3\\y=1\end{cases}\)
Vậy x=3;y=1
b)Đặt \(\frac{x}{2}=\frac{y}{7}=k\)(1)
\(\Rightarrow x=2k;y=7k\)(2)
Mà x.y=126
Vậy từ (2) suy ra:2k.7k=126
14k2=126
k2=9=32=(-3)2
Do đó k=3;-3
Từ (1) suy ra:x=2.3=6;y=3.7=21
x=-2.3=-6;y=-3.7=-21
Vậy cặp (x;y) TM là:(6;21)(-6;-21)
Giải hệ PT:
\(\hept{\begin{cases}3\cdot\frac{x+y}{x-y}=-7\\\frac{5x-y}{y-x}=\frac{5}{3}\end{cases}}\)
\(\left(x;y\right)=\left(x;\frac{5}{2}x\right)\)(với x\(\in\)R). Với điều kiện x\(\ne\)y ta có:
\(\hept{\begin{cases}\frac{3\left(x+y\right)}{x-y}=-7\\\frac{5x-y}{y-x}=\frac{5}{3}\end{cases}\Leftrightarrow\hept{\begin{cases}3\left(x+y\right)=-7\left(x-y\right)\\3\left(5x-y\right)=5\left(y-x\right)\end{cases}\Leftrightarrow}\hept{\begin{cases}10x-4y=0\\20x-8y=0\end{cases}}}\)
Tập nghiệm của hệ phương trình này trùng lặp với tập nghiệm của phương trình 10x-4y=0
Vậy hệ có vô số nghiệm (x;y) tính theo công thức \(\hept{\begin{cases}x\in R\\y=\frac{5}{2}x\end{cases}}\)
Điều kiện x\(\ne\)y thỏa mãn khi và chỉ khi x\(\ne\)0
Bài 1:
Giả sử có các số nguyên thỏa mãn các đẳng thức đã cho
Xét x3+xyz=x(x2+yz)=579 -->x lẻ.
Tương tự xét
y3+xyz=795; z3+xyz=975 ta đc: y,z là số lẻ
Vậy x3 là 1 số lẻ; xyz là 1 số lẻ, do đó x3+xyz là một số chẵn trái với đề bài
Vậy không tồn tại các số nguyên x,y,z thỏa mãn đẳng thức đã cho
Bài 2:
Ta có: VP=1984
Vì 2x-2y=1984>0 =>x>y
=>VT=2x-2y=2y(2x-y-1)
pt trở thành:
2y(2x-y-1)=26*31
\(\Rightarrow\begin{cases}2^y=2^6\left(1\right)\\2^{x-y}-1=31\left(2\right)\end{cases}\)
Từ pt (1) =>y=6
Thay y=6 vào pt (2) đc:
2x-6-1=31 => 2x-6=32
=>2x-6=25
=>x-6=5 <=>x=11
Vậy x=11 và y=6
Ta có \(\left(\frac{x^3}{y^2+z}+\frac{y^3}{z^2+x}+\frac{z^3}{x^2+y}\right)\left[x\left(y^2+x\right)+y\left(z^2+x\right)+z\left(x^2+y\right)\right]\ge\left(x^2+y^2+z^2\right)^2\left(1\right)\)
Ta chứng minh \(\left(x^2+y^2+z^2\right)^2\ge\frac{4}{5}\left[x\left(y^2+z\right)+y\left(z^2+x\right)+z\left(x^2+y\right)\right]\)
\(\Leftrightarrow5\left(x^2+y^2+z^2\right)^2\ge4\left[x\left(y^2+z\right)+y\left(z^2+x\right)+z\left(x^2+y\right)\right]\left(2\right)\)
Thật vậy \(\hept{\begin{matrix}3\left(\Sigma x^2\right)^2\ge\left(\Sigma x^2\right)\cdot\Sigma x^2=4\Sigma zx\left(3\right)\\2\left(\Sigma x^2\right)^2\ge4\Sigma xy^2\left(4\right)\end{matrix}\Leftrightarrow2\left(\Sigma x^2\right)^2\ge\Sigma xy^2\left(x+y+z\right)}\)(*)
Từ các Bất Đẳng Thức \(\hept{\begin{cases}\frac{x^4-2x^3z+z^2x^2}{2}\ge0\\\frac{x^4+y^4+2x^4}{4}\ge xyz^2\end{cases}}\)=> (*) đúng
Như vậy (3),(4) đúng => (2) đúng
Từ đó suy ra \(T\ge\frac{4}{5}\)
Dấu "=" xảy ra khi \(x=y=z=\frac{2}{3}\)
Ta có:\(\frac{3+x}{7+y}\)=\(\frac{3}{7}\)
=>(3+x)*7=(7+y)*3
=>21+7x=21+3y
=> 7x=3y
=> x=\(\frac{3}{7}\)*y
Mà x+y=20
<=>\(\frac{3}{7}\)*y+y=20
<=>y*(\(\frac{3}{7}\)+1)=20
<=>y*\(\frac{10}{7}\)=20
=>y=20:\(\frac{10}{7}\)
=>y=14
=>x=20-14
=>x=6
Vậy 2 số tự nhiên x,y cần tìm là 6 và 14