Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì ƯCLN (a;b) = 6 nên a = 6m; b = 6n (ƯCLN(m;n) = 1)
a + b = 96 => 6(m + n) = 96 => m + n = 16
Vì m;n là 2 số nguyên tố cùng nhau => Chọn được các cặp (m;n) thoả mãn là (15; 1); (1; 15); (13; 3); (3; 13); (11; 5); (5; 11); (9; 7); (7; 9)
Từ đó tính được các cặp số (a;b) cần tìm là (90; 6); (6; 90); (78; 18); (18; 78); (66; 30); (30; 66); ; (54; 42); (42; 54)
vì ƯCLN(a,b)=6 (a<b)
a=6m
b=6n
với (m,n)=1,m\(\le\)n
a+b=6m+6n=6(m+n)=84
=>m+n=14
m=1 ,n=13,=>a=6,b=78
m=3,n=11,=>a=18,b=66
m=5,n=9,=>a=30,b=54
m=7,n=7,a=42,b=42
bài còn lại cũng tương tự
Ta có :
\(a=m.c\)
\(b=n.c\)
\(\Rightarrow\) \(ƯCLN\left(a,b\right)=c\)
\(BCNN\left(a,b\right)=c.m.n\)
Vì \(ƯCLN\left(a,b\right)=16\Rightarrow a=16m\)
\(b=16n\)
Sao cho \(ƯCLN\left(m,n\right)=1\)
\(BCNN\left(a,b\right)=16.m.n\)
\(\Rightarrow\)\(240=16.m.n\)
\(\Rightarrow\)\(m.n=15\)
m | 1 | 15 | 3 | 5 |
n | 15 | 1 | 5 | 3 |
a | 16 | 240 | 48 | 80 |
b | 240 | 16 | 80 | 48 |
Vây \(\left(a,b\right)\)thỏa mãn :
\(\left(16;240\right);\left(240;16\right);\left(80;48\right);\left(48;80\right)\)
a) \(ƯCLN\left(a,b\right)=6\Rightarrow a=6m,b=6n\left(a,b\inℕ^∗\right)\)
Giả sử \(a\ge b\Rightarrow m\ge n\).
\(a+b=96\Rightarrow6m+6n=96\Leftrightarrow m+n=16\)
Chia bảng xét các trường hợp của \(m,n\)ta được kết quả.
b) Làm tương tự câu a).