K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 11 2021

a. do a và b là STN => a + 1 và b+2 cũng là STN 

mà 5 = 1.5 => a +1=1 và b+2 =5 vì a+1 < b+2 => a =0 và b=3

Vậy a=0 và b=3

k cho mình nha

14 tháng 11 2021

b.ab+a+b=2

=a.10+b+a

=a.11+2b

=> a=0 và b=1

13 tháng 8 2016

Ta có : ƯCLN(a,b)=5 => a = 5m , b = 5n và ƯCLN(m,n)=1  với ( a > b ) => m > n  

=> a.b=5m.5n=25.mn=300

=> mn=300 : 25 = 12

Ta có bảng liệt kê sau : 

m412
n31
a2060
b155
13 tháng 10 2024

siuuuuu

26 tháng 11 2021

em thấy cj Trà My lm đúng á

18 tháng 11 2021

- Ta có: a ≥ b ( a,b ∈ N )

ƯCLN ( a, b) = 16

⟹ a chia hết cho 16 ⟹ a = 16.m

⟹ b chia hết cho 16 ⟹ b = 16. n

(m, n là thương; m,n ∈ N, m ≥ n)

ƯCLN(m,n) = 1

⟹ a . b = ƯCLN.BCNN

mà a = 16. m

      b = 16. n

Thay số: 16 . m . 16 . n = 16 . 240

               16. m . 16. n = 3840

               256. m. n = 3840

⟹ m. n = 3840 : 256 = 15

Ta có bảng sau :

m.........
n.........
a.........
b.........

⟹ Vậy (a,b) ∈ { (... ...) ; (... , ....)}

17 tháng 11 2024

Ngu thế

1/ a)Cho A= 20+21+22+23+24+25 +26 .........+ 299  CMR: A chia hết cho 31 b)tìm số tự nhiên n để 3n+4 chia hết cho n -12/tìm hai số nguyên dương a, b  biết  [ a,b] = 240 và (a,b) = 163/tìm hai số nguyên dương a,b biết rằng ab=216 và (a ,b)=64/tìm hai số nguyên dương a,b biết rằng ab=180 , [a,b] =605/tìm hai số nguyên dương a,b biết a/b =2,6 và (a,b) =56/ tìm a,b biết a/b=4/5 và [ a,b ] = 1407/tìm số nguyên dương  a,b biết...
Đọc tiếp

1/ a)Cho A= 20+21+22+23+24+25 +26 .........+ 299  CMR: A chia hết cho 31 

b)tìm số tự nhiên n để 3n+4 chia hết cho n -1

2/tìm hai số nguyên dương a, b  biết  [ a,b] = 240 và (a,b) = 16

3/tìm hai số nguyên dương a,b biết rằng ab=216 và (a ,b)=6

4/tìm hai số nguyên dương a,b biết rằng ab=180 , [a,b] =60

5/tìm hai số nguyên dương a,b biết a/b =2,6 và (a,b) =5

6/ tìm a,b biết a/b=4/5 và [ a,b ] = 140

7/tìm số nguyên dương  a,b biết a+b = 128 và (a ,b)=16

8/ a)tìm a,b biết a+b = 42 và [a,b] = 72 

b)tìm a,b biết a-b =7 , [a,b] =140

9/tìm hai số tự nhiên , biết rằng tổng cúa chúng bằng 100 và có UwCLN là 10

10/ tìm 2 số tự nhiên biết ƯCLN của chúng là 5 và chúng có tích là 300

11/ chứng minh rằng nếu số nguyên tố p> 3 thì (p - 1) . (p + 1)  chia hết cho 24

12/ tìm hai số tự nhiên a,b (a < b ) biết ƯCLN (a,b ) = 12 ,  BCNN(a,b) = 180

 

2
29 tháng 10 2015

BÀI NÀY Ở ĐÂU MÀ NHIỀU THẾ BẠN!?

GIẢI CHẮC ĐÃ LẮM ĐÓ

29 tháng 10 2015

câu 1 a) thíu là chứng minh rằng a chia hết cho 31

 

8 tháng 8 2016

vì ƯCLN(a,b)=6 (a<b)

a=6m

b=6n

với (m,n)=1,m\(\le\)n

a+b=6m+6n=6(m+n)=84

=>m+n=14

m=1 ,n=13,=>a=6,b=78

m=3,n=11,=>a=18,b=66

m=5,n=9,=>a=30,b=54

m=7,n=7,a=42,b=42

bài còn lại cũng tương tự

24 tháng 11 2016

bạn làm hay quá

11 tháng 9 2020

con dien :C

11 tháng 9 2020

+) Cách tính số tam giác biết số đường thẳng: Giả sử cho n đường thẳng, điều kiện là cứ 2 đường cho đúng 1 giao điểm

---> Cứ 3 đường thẳng cho 1 tam giác---> Số tam giác: \(\frac{\left(n-2\right)\left(n-1\right)n}{6}\)

Bài 1/ Vì 2 số cần tìm có ƯCLN là 6 nên ta đặt chúng là 6a và 6b

Vì 2 số đó không còn ước chung nào lớn hơn 6 nên ƯCLN(a,b)=1

Xét \(6a+6b=84\Rightarrow a+b=14\)mà (a,b)=1

\(\Rightarrow\left(a,b\right)=\left(1;13\right),\left(3;11\right),\left(5;9\right),\left(9;5\right),\left(11;3\right),\left(13;1\right)\)

---> Nhân 6 hết lên là ra kết quả cuối cùng.

Bài 2/ Tương tự bài 1 đặt 2 số càn tìm là \(a=16x\)và \(b=16y\)với (x,y)=1

Có \(ab=BCNN\left(a,b\right).ƯCLN\left(a,b\right)\Rightarrow16x.16y=240.16\Rightarrow xy=15\)

\(\Rightarrow\left(x,y\right)=\left(1;15\right),\left(3;5\right),\left(5;3\right),\left(15,1\right)\)--->Nhân 16 hết lên là xong

Bài 3/ Cũng tương tự mấy bài trên đặt \(a=16x\),\(b=16y\), với (x;y)=1

\(\Rightarrow6x.6y=216\Rightarrow xy=6\)

\(\Rightarrow\left(x,y\right)=\left(1;6\right),\left(2;3\right),\left(3;2\right),\left(6,1\right)\)---> Nhân 6 hết lên đi nha

Bài 4/ Tương tự phía trên \(ab=\left[a,b\right].\left(a,b\right)\Rightarrow\left(a,b\right)=\frac{ab}{\left[a,b\right]}=3\)

Vậy hiển nhiên là đặt \(a=3x,b=3y\)với (x,y)=1 roi.

\(\Rightarrow3x.3y=180\Rightarrow xy=20\)

\(\Rightarrow\left(x,y\right)=\left(1;20\right),\left(4;5\right),\left(5;4\right),\left(20,1\right)\)----> Nhân 3 hết lên mới được kết quả cuối cùng nha !!

28 tháng 12 2017

Ta có : 3x + 2 chia hết cho n - 1

=> 3x - 3 + 5 chia hết cho n - 1

=> 3(n - 1) + 5 chia hết cho n - 1

=> 5 chia hết cho n - 1

=> n - 1 thuộc Ư(5) = {1;5} 

=> n = {2;6}

28 tháng 12 2017

a) 3n+2 \(⋮\) n-1 <=> 3(n-1)+5 \(⋮\) n-1

=> 5 \(⋮\) n-1 (vì 3(n-1) \(⋮\) n-1)

=> n-1 ∈ Ư(5) = {1; 5}

n-1 = 1 => n = 2

n-1 = 5 => n = 6

Vậy n ∈ {2; 6}

b)

Vì \(ƯCLN\left(a,b\right)=3\Rightarrow\hept{\begin{cases}a=3.m\\b=3.n\end{cases};\left(m,n\right)=1;m,n\in N}\)

Thay a = 3.m, b = 3.n vào a.b = 891, ta có:

3.m.3.n = 891

=> (3.3).(m.n) = 891

=> 9.(m.n) = 891

=> m.n = 891 : 9

=> m.n = 99

Vì m và n nguyên tố cùng nhau

=> Ta có bảng giá trị:

m199911
n991119
a32972733
b29733327

Vậy các cặp (a,b) cần tìm là:

(3; 297); (297; 3); (27; 33); (33; 27).

5 tháng 7 2015

1) a chia 6 dư 2 => a= 6k+2

b chia 6 dư 3 => b= 6k+3

=> ab=\(\left(6k+2\right)\left(6k+3\right)=36k^2+30k+6\)=> chia hết cho 6 

2) a= 5k+2; b=5k+3

=> \(ab=\left(5k+2\right)\left(5k+3\right)=25k^2+25k+6=25k\left(k+1\right)+6\)

=> dễ thấy 25k(k+1) chia hết cho 5. 6 chia 5 dư 1

=> ab chia 5 dư 1