Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : ƯCLN(a,b)=5 => a = 5m , b = 5n và ƯCLN(m,n)=1 với ( a > b ) => m > n
=> a.b=5m.5n=25.mn=300
=> mn=300 : 25 = 12
Ta có bảng liệt kê sau :
m | 4 | 12 |
n | 3 | 1 |
a | 20 | 60 |
b | 15 | 5 |
- Ta có: a ≥ b ( a,b ∈ N )
ƯCLN ( a, b) = 16
⟹ a chia hết cho 16 ⟹ a = 16.m
⟹ b chia hết cho 16 ⟹ b = 16. n
(m, n là thương; m,n ∈ N, m ≥ n)
ƯCLN(m,n) = 1
⟹ a . b = ƯCLN.BCNN
mà a = 16. m
b = 16. n
Thay số: 16 . m . 16 . n = 16 . 240
16. m . 16. n = 3840
256. m. n = 3840
⟹ m. n = 3840 : 256 = 15
Ta có bảng sau :
m | ... | ... | ... |
n | ... | ... | ... |
a | ... | ... | ... |
b | ... | ... | ... |
⟹ Vậy (a,b) ∈ { (... , ...) ; (... , ....)}
vì ƯCLN(a,b)=6 (a<b)
a=6m
b=6n
với (m,n)=1,m\(\le\)n
a+b=6m+6n=6(m+n)=84
=>m+n=14
m=1 ,n=13,=>a=6,b=78
m=3,n=11,=>a=18,b=66
m=5,n=9,=>a=30,b=54
m=7,n=7,a=42,b=42
bài còn lại cũng tương tự
+) Cách tính số tam giác biết số đường thẳng: Giả sử cho n đường thẳng, điều kiện là cứ 2 đường cho đúng 1 giao điểm
---> Cứ 3 đường thẳng cho 1 tam giác---> Số tam giác: \(\frac{\left(n-2\right)\left(n-1\right)n}{6}\)
Bài 1/ Vì 2 số cần tìm có ƯCLN là 6 nên ta đặt chúng là 6a và 6b
Vì 2 số đó không còn ước chung nào lớn hơn 6 nên ƯCLN(a,b)=1
Xét \(6a+6b=84\Rightarrow a+b=14\)mà (a,b)=1
\(\Rightarrow\left(a,b\right)=\left(1;13\right),\left(3;11\right),\left(5;9\right),\left(9;5\right),\left(11;3\right),\left(13;1\right)\)
---> Nhân 6 hết lên là ra kết quả cuối cùng.
Bài 2/ Tương tự bài 1 đặt 2 số càn tìm là \(a=16x\)và \(b=16y\)với (x,y)=1
Có \(ab=BCNN\left(a,b\right).ƯCLN\left(a,b\right)\Rightarrow16x.16y=240.16\Rightarrow xy=15\)
\(\Rightarrow\left(x,y\right)=\left(1;15\right),\left(3;5\right),\left(5;3\right),\left(15,1\right)\)--->Nhân 16 hết lên là xong
Bài 3/ Cũng tương tự mấy bài trên đặt \(a=16x\),\(b=16y\), với (x;y)=1
\(\Rightarrow6x.6y=216\Rightarrow xy=6\)
\(\Rightarrow\left(x,y\right)=\left(1;6\right),\left(2;3\right),\left(3;2\right),\left(6,1\right)\)---> Nhân 6 hết lên đi nha
Bài 4/ Tương tự phía trên \(ab=\left[a,b\right].\left(a,b\right)\Rightarrow\left(a,b\right)=\frac{ab}{\left[a,b\right]}=3\)
Vậy hiển nhiên là đặt \(a=3x,b=3y\)với (x,y)=1 roi.
\(\Rightarrow3x.3y=180\Rightarrow xy=20\)
\(\Rightarrow\left(x,y\right)=\left(1;20\right),\left(4;5\right),\left(5;4\right),\left(20,1\right)\)----> Nhân 3 hết lên mới được kết quả cuối cùng nha !!
Ta có : 3x + 2 chia hết cho n - 1
=> 3x - 3 + 5 chia hết cho n - 1
=> 3(n - 1) + 5 chia hết cho n - 1
=> 5 chia hết cho n - 1
=> n - 1 thuộc Ư(5) = {1;5}
=> n = {2;6}
a) 3n+2 \(⋮\) n-1 <=> 3(n-1)+5 \(⋮\) n-1
=> 5 \(⋮\) n-1 (vì 3(n-1) \(⋮\) n-1)
=> n-1 ∈ Ư(5) = {1; 5}
n-1 = 1 => n = 2
n-1 = 5 => n = 6
Vậy n ∈ {2; 6}
b)
Vì \(ƯCLN\left(a,b\right)=3\Rightarrow\hept{\begin{cases}a=3.m\\b=3.n\end{cases};\left(m,n\right)=1;m,n\in N}\)
Thay a = 3.m, b = 3.n vào a.b = 891, ta có:
3.m.3.n = 891
=> (3.3).(m.n) = 891
=> 9.(m.n) = 891
=> m.n = 891 : 9
=> m.n = 99
Vì m và n nguyên tố cùng nhau
=> Ta có bảng giá trị:
m | 1 | 99 | 9 | 11 |
n | 99 | 1 | 11 | 9 |
a | 3 | 297 | 27 | 33 |
b | 297 | 3 | 33 | 27 |
Vậy các cặp (a,b) cần tìm là:
(3; 297); (297; 3); (27; 33); (33; 27).
1) a chia 6 dư 2 => a= 6k+2
b chia 6 dư 3 => b= 6k+3
=> ab=\(\left(6k+2\right)\left(6k+3\right)=36k^2+30k+6\)=> chia hết cho 6
2) a= 5k+2; b=5k+3
=> \(ab=\left(5k+2\right)\left(5k+3\right)=25k^2+25k+6=25k\left(k+1\right)+6\)
=> dễ thấy 25k(k+1) chia hết cho 5. 6 chia 5 dư 1
=> ab chia 5 dư 1
a. do a và b là STN => a + 1 và b+2 cũng là STN
mà 5 = 1.5 => a +1=1 và b+2 =5 vì a+1 < b+2 => a =0 và b=3
Vậy a=0 và b=3
k cho mình nha
b.ab+a+b=2
=a.10+b+a
=a.11+2b
=> a=0 và b=1