Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Ta có: \(x^3-x^2y-xy^2+y^3\)
\(=\left(x^3+y^3\right)-\left(x^2y+xy^2\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)-xy\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2-2xy+y^2\right)\)
\(=\left(x+y\right)\left(x-y\right)^2\)
a) \(6xy+4x-9y-7=0\)
\(\Leftrightarrow2x.\left(3y+2\right)-9y-6-1=0\)
\(\Leftrightarrow2x.\left(3y+x\right)-3.\left(3y+2\right)=1\)
\(\Leftrightarrow\left(2x-3\right).\left(3y+2\right)=1\)
Mà \(x,y\in Z\Rightarrow2x-3;3y+2\in Z\)
Tự làm típ
\(A=x^3+y^3+xy\)
\(A=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)
\(A=x^2-xy+y^2+xy\)( vì \(x+y=1\))
\(A=x^2+y^2\)
Áp dụng bất đẳng thức Bunhiakovxky ta có :
\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x\cdot1+y\cdot1\right)^2=\left(x+y\right)^2=1\)
\(\Leftrightarrow2\left(x^2+y^2\right)\ge1\)
\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)
Hay \(x^3+y^3+xy\ge\frac{1}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)
Do \(x\left(x+1\right)⋮2\Rightarrow\left(y^2+1\right)⋮2\Rightarrow\) y2 là số lẻ hay y là số lẻ.
Ta đặt \(y=2k+1\left(k\in Z\right)\), khi đó \(x\left(x+1\right)=\left(2k+1\right)^2+1\)
\(\Leftrightarrow\left(x^2+x+\frac{1}{4}\right)-\left(2k+1\right)^2=\frac{5}{4}\)
\(\Leftrightarrow4\left(x+\frac{1}{2}\right)^2-4\left(2k+1\right)^2=5\Leftrightarrow\left[\left(2x+1-4k-2\right)\right]\left[\left(2x+1+4k+2\right)\right]=5\)
\(\Leftrightarrow\left(2x-4k-1\right)\left(2x+4k+3\right)=5\)
Tới đây ta tìm được các cặp (x, k), từ đó suy ra các cặp (x,y)
sd đk có nghiệm của phương trình
a, x^2+x(y-2)+y^2-y=0 (1)
để tồn tại x thì pt (1) phải có nghiệm
\ (y-2)^2-4(y^2-y)\geq0
-3y^2+4\geq0
vô lí. Vậy phương trình ko có nghiệm nguyên
Thánh nữa.
Câu nào không có nghiệm nguyên. Cả câu a và câu b ít nhất đều có nghiệm nguyên là (x, y) = (0, 0) nhé
a, \(=5x^3-2x^2y-5x^2y+2xy^2+5x-2y\)
\(=5x^3-7x^2y+2xy^2+5x-2y\)
b, \(=\left(x^2-1\right)\left(x+2\right)\)
\(=x^3-x+2x^2-2\)
c, đề không rõ
d, đề không rõ
P/s có gì bạn tham khảo các thanh công cụ ở trên để đánh cô hỏi cho rõ nha
\(2x+y+xy=3\)
\(\left(xy+y\right)+\left(2x+2\right)=3+2\)
\(y\left(x+1\right)+2\left(x+1\right)=5\)
\(\left(x+1\right)\left(y+2\right)=5\)
Do đó: \(\left(x+1\right)\inƯ_{\left(5\right)}=\left(-5;-1;1;5\right)\)
Ta có bảng sau:
Vậy có 4 cặp số thỏa mãn đề bài:
\(x=-6,y=-3\)
\(x=-2,y=-7\)
\(x=0,y=3\)
\(x=4,y=-1\)
Chúc bạn học tốt.