Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do a ∈ Z + => 5b = a3 + 3a2 + 5 > a + 3 = 5c => 5b > 5c => b>c => 5b 5c => (a3 + 3a2 + 5) ( a+3) => a2 (a+3) + 5 a + 3
Mà a2 (a+3) a + 3 [do (a+3) (a+3)] => 5 a + 3 => a + 3 ∈ Ư (5) => a+ 3 ∈ { ± 1 ; ± 5 } (1) Do a ∈ Z+ => a + 3 ≥ 4 (2) Từ (1) và (2) => a + 3 = 5 => a = 5 – 3 =2
. => 23 + 3 . 22 + 5 = 55 25 = 5b 52 = 5b b = 2 2 + 3 = 5c 5 = 5c 5 = 5c c = 1 Vậy : a = 2 b = 2 c = 1
. => 23 + 3 . 22 + 5 = 55 25 = 5b 52 = 5b b = 2 2 + 3 = 5c 5 = 5c 5 = 5c c = 1 Vậy : a = 2 b = 2 c = 1
1. Ta có : a2 = b2 + c2 và b2 = 2c2 - 2013
\(\Leftrightarrow\)a2 - b2 - c2 = 0 và b2 - 2c2 = -2013
Do đó : M = 5a2 - 7b2 - c2
= ( 5a2 - 5b2 - 5c2 ) = -2b2 + 4c2
= 5 . ( a2 - b2 - c2 ) - 2 . ( b2 - 2c2 )
= 0 - 2 . ( -2013 ) = 4026
bài 1: ta thay \(a^2=b^2+c^2;b^2=2c^2-2013\)vào Q ta được:
Q= \(5a^2-7b^2-c^2=5\left(a^2+b^2\right)-7b^2-c^2=-2b^2+4c^2\)
=\(-2\left(2c^2-2013\right)+4c^2=4026\)