Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có a.b.c = a+b+c
Giả sử a = b = c ta có a^3 = 3a => a^2 = 3. Ptrình này không cho nghiệm nguyên dương, nên a; b; c là 3 số nguyên dương phân biệt.
Tìm các số nguyên dương:
Giả sử a là số lớn nhất trong 3 số. Ta có a + b + c = a.b.c < 3a. Hay tích b.c <3. Vì a; b; c là các số nguyên dương; b.c <3. Do b;c nguyên dương nên tích b,c nguyên dương hay b.c = 1 hoặc b.c =2. Mặt khác chứng minh được b khác c nên b và c chỉ có thể là 1 và 2. Ở đây ta giả sử c là 1. thì b là 2. (b khác 2 thì tích b.c > 3 là vô lý).
Vậy ta có 1 + 2 + a = 1.2.a hay 3+a = 2a => a = 3.
______________________________________________
li-ke cho mk nhé bn nguyễn thị huyền thương
Gọi 2 số lẻ liên tiếp là a^2,(a+2)^2.
Ta có (a+2)^2-a^2=a^2+4a+4-a^2=4a+4=56.
=>4a=52=> a=13. Vậy 2 số lẻ liên tiếp đó là 13,15
Gọi 2 số chính phương liên tiếp là \(a^2\) và \(\left(a+1\right)^2\)
Do a, a + 1 là 2 số tự nhiên liên tiếp
=> Luôn có 1 số chẵn, 1 số lẻ => \(a\left(a+1\right)\) chẵn
Có \(a^2+\left(a+1\right)^2+a^2.\left(a+1\right)^2\)
= \(a^2+\left(a^2+2a+1\right)+a^2\left(a^2+2a+1\right)\)
= \(a^4+2a^3+3a^2+2a+1\)
= \(\left(a^2+a+1\right)^2=\left[a\left(a+1\right)+1\right]^2\)
=> đpcm
gọi 3 số đó lần lượt là n ; n+1 ; n+2 , ta có :
n2 + ( n + 1 )2 + ( n + 2 )2 = 77 => 3n2 + 6n + 5 = 77 => 3n( n + 2) =72 => n( n +2 ) = 24
Dễ dàng giải được n = 4 ( vì n là số tự nhiên ). Vậy 3 số cần tìm là 4 ;5 ;6.
Có thể gọi 3 ssos đó là n-1 ; n ; n+1 để phương trình đơn giản hơn
Gọi 3 số nguyên liên tiếp là a-1, a, a+1 (a ∈ Z)
Theo đề ta có \(\left(a-1\right)^2+a^2=\left(a+1\right)^2\)
\(\Leftrightarrow a^2-2a+1+a^2=a^2+2a+1\)
\(\Leftrightarrow a^2-4a=0\)
\(\Leftrightarrow a\left(a-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=0\\a=4\end{matrix}\right.\)
Vậy có 2 cặp 3 số nguyên liên tiếp đó là \(\left(-1;0;1\right)\) và \(\left(3;4;5\right)\)
Tick nha bạn 😘