\(\sqrt[3]{\frac{11+5\sqrt{7}}{4}}=a=b\sqrt{7}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 11 2015

\(\sqrt[3]{\frac{11+5\sqrt{7}}{4}}=a+b\sqrt{7}\)

\(11+5\sqrt{7}=4\left(a+b\sqrt{7}\right)^3=4\left(a^3+3a^2b\sqrt{7}+3ab^2.7+b^3.7\sqrt{7}\right)\)

\(=4\left(a^3+21ab^2\right)+4\left(3a^2b+7b^3\right)\sqrt{7}\)

\(\Leftrightarrow\int^{4a^3+84ab^2=11}_{12a^2b+28b^3=5}\)=> a =? b=?  khó quá

a: \(=\dfrac{2\sqrt{7}+10-2\sqrt{7}+10}{7-25}=\dfrac{20}{-18}=\dfrac{-10}{9}\) là số hữu tỉ

b: \(=\dfrac{12+2\sqrt{35}+12-2\sqrt{35}}{2}=\dfrac{24}{2}=12\) là số hữu tỉ

10 tháng 6 2021

Sai đề ?

10 tháng 6 2021

sr nha này : \(\frac{3}{a+\sqrt{3}}-\frac{2}{a-b\sqrt{3}}=7-20\sqrt{3}\)tìm a,b hữu tỉ

7 tháng 1 2017

\(\frac{5\left(a-b\sqrt{2}\right)-4\left(a+b\sqrt{2}\right)}{a^2-2b^2}+18\sqrt{2}=3\)

\(\left(a-9b\sqrt{2}\right)+\left(a^2-2b^2\right)18\sqrt{2}=3\left(a^2-2b\right)\)

\(\sqrt{2}\left[18\left(a^2-2b^2\right)-9b\right]+a=3\left(a^2-2b\right)\)

\(\sqrt{2}\)là số vô tỷ=> \(\hept{\begin{cases}2a^2-4b^2-b=0\\3a^2-6b-a=0\end{cases}\Leftrightarrow}\) (giải hệ này ra a,b)

3 tháng 8 2018

a)Ta có:  \(2\sqrt{5}< 5\sqrt{2}\)\(2\sqrt{5}=\sqrt{2^2.5}=\sqrt{20}\)

\(5\sqrt{2}=\sqrt{5^2.2}=\sqrt{50}\)

Vì \(\sqrt{20}< \sqrt{50}\)

Nên \(2\sqrt{5}< 5\sqrt{2}\)

b)Ta có: \(3\sqrt{13}=\sqrt{3^2.13}=\sqrt{117}\)

\(4\sqrt{11}=\sqrt{4^2.11}=\sqrt{176}\)

Vì \(\sqrt{117}< \sqrt{176}\)

Nên \(3\sqrt{13}< 4\sqrt{11}\)

c) Ta có: \(\frac{3}{4}.\sqrt{7}=\sqrt{\left(\frac{3}{4}\right)^2.7}=\sqrt{\frac{63}{16}}\)

\(\frac{2}{5}.\sqrt{5}=\sqrt{\left(\frac{2}{5}\right)^2.5}=\sqrt{\frac{4}{5}}\)

Vì \(\sqrt{\frac{63}{16}}>1\)

\(\sqrt{\frac{4}{5}}< 1\)

Nên \(\sqrt{\frac{63}{16}}>\sqrt{\frac{4}{5}}\)

Vậy \(\frac{3}{4}.\sqrt{7}>\frac{2}{5}.\sqrt{5}\)