Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{a+c}{b}\)
<=> \(\frac{a+b}{c}+1=\frac{b+c}{a}+1=\frac{a+c}{b}+1\)
<=> \(\frac{a+b+c}{c}=\frac{a+b+c}{a}=\frac{a+b+c}{b}\)
<=> a + b + c = 0 hoặc a = b = c.
Th1: a + b + c = 0
=> a + b = - c ; a + c = -b ; b + c = -a.
Thế vào P :
\(P=\left(1+\frac{a}{b}\right)\cdot\left(1+\frac{b}{c}\right)\cdot\left(1+\frac{c}{a}\right)\)
\(=\left(\frac{a+b}{b}\right)\cdot\left(\frac{b+c}{c}\right)\cdot\left(\frac{c+a}{a}\right)\)
\(=-\frac{c}{b}.\frac{\left(-a\right)}{c}.\frac{\left(-b\right)}{a}=-1\)
TH2: a = b = c. THế vào P
\(P=\left(1+1\right).\left(1+1\right).\left(1+1\right)=8\)
Vậy: P = -1 nếu a + b + c = 0
hoặc P = 8 nếu a = b = c.
\(P=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\frac{a+b}{b}.\frac{b+c}{c}.\frac{c+a}{a}\)
Ta có: \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{a+c}{b}\)\(\Rightarrow\frac{a+b}{c}+1=\frac{b+c}{a}+1=\frac{a+c}{b}+1=\frac{a+b+c}{c}=\frac{a+b+c}{a}=\frac{a+b+c}{b}\)
TH1: Nếu \(a+b+c=0\)\(\Rightarrow\hept{\begin{cases}a+b=-c\\b+c=-a\\c+a=-b\end{cases}}\)
\(\Rightarrow P=\frac{-c}{b}.\frac{-a}{c}.\frac{-b}{a}=\frac{\left(-a\right).\left(-b\right).\left(-c\right)}{abc}=-1\)
TH2: Nếu \(a+b+c\ne0\)\(\Rightarrow a=b=c\)
\(\Rightarrow\hept{\begin{cases}a+b=2b\\b+c=2c\\c+a=2a\end{cases}}\)\(\Rightarrow P=\frac{2b}{b}.\frac{2c}{c}.\frac{2a}{a}=2.2.2=8\)
Vậy \(P=-1\)hoặc \(P=8\)
Câu hỏi của Chu Hoàng THủy Tiên - Toán lớp 7 - Học toán với OnlineMath
Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)
+) Xét \(a+b+c=0\Rightarrow\left\{\begin{matrix}a+b=-c\\b+c=-a\\a+c=-b\end{matrix}\right.\)
\(B=\left(1+\frac{b}{a}\right).\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)=\frac{a+b}{a}.\frac{a+c}{c}.\frac{b+c}{b}=\frac{-c}{a}.\frac{-b}{c}.\frac{-a}{b}=-1\)
+) Xét \(a+b+c\ne0\)
\(\left\{\begin{matrix}\frac{a+b-c}{c}=2\\\frac{b+c-a}{a}=2\\\frac{c+a-b}{b}=2\end{matrix}\right.\Rightarrow\left\{\begin{matrix}a+b=3c\\b+c=3a\\a+c=3b\end{matrix}\right.\)
\(B=\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)=\frac{a+b}{a}.\frac{a+c}{c}.\frac{b+c}{b}=\frac{3c}{a}.\frac{3b}{c}.\frac{3a}{b}\)
\(=3.3.3=27\)
Vậy B = -1 hoặc B = 27
Áp dụng tính chất dãy tỉ số bằng nhau, có :
\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{a+c-b}{b}\)\(=\frac{a+b-c+b+c-a+a+c-b}{c+a+b}\)\(=\frac{a+b+c}{c+a+b}=1\)
\(\Rightarrow\hept{\begin{cases}\frac{a+b-c}{c}=1\Rightarrow\frac{a+b}{c}=2\left(\frac{a+b}{c}-\frac{c}{c}=1\Rightarrow\frac{a+b}{c}-1=1\right)\\\frac{b+c-a}{a}=1\Rightarrow\frac{b+c}{a}=2\\\frac{a+c-b}{b}=1\Rightarrow\frac{a+c}{b}=2\end{cases}}\) ( Tương tự )
Có : \(\left(1+\frac{b}{a}\right)\cdot\left(1+\frac{a}{c}\right)\cdot\left(1+\frac{c}{b}\right)=\frac{a+b}{a}\cdot\frac{a+c}{c}\cdot\frac{b+c}{b}\)
Hay: \(=\frac{a+b}{c}\cdot\frac{b+c}{a}\cdot\frac{a+c}{b}\)( phép nhân có tính chất giao hoán )
\(=2\cdot2\cdot2=8\)
Ta có \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)(dãy tỉ số bằng nhau)
=> a = b = c
Khi đó \(P=\left(1+\frac{2a}{b}\right)\left(1+\frac{2b}{c}\right)\left(1+\frac{2c}{a}\right)=\left(1+\frac{2b}{b}\right)\left(1+\frac{2c}{c}\right)\left(1+\frac{2a}{a}\right)\)
= (1 + 2)(1 + 2)(1 + 2) = 3.3.3 = 27
Vậy P = 27
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\) ( do a + b + c khác 0 )
\(\Rightarrow\hept{\begin{cases}\frac{a}{b}=1\\\frac{b}{c}=1\\\frac{c}{a}=1\end{cases}}\Rightarrow a=b=c\)
Thế vào P ta được :
\(P=\left(1+\frac{2b}{b}\right)\left(1+\frac{2c}{c}\right)\left(1+\frac{2a}{a}\right)=\left(1+2\right)\left(1+2\right)\left(1+2\right)=27\)