Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Ta thấy: 5 đồng dư với 1(mod 2)
=>52003 đồng dư với 12003(mod 2)
=>52003 đồng dư với 1(mod 2)
=>52003=2k+1
=>\(19^{5^{2003}}=19^{2k+1}\)
a)Ta thấy: 5 đồng dư với 1(mod 2)
=>52003 đồng dư với 12003(mod 2)
=>52003 đồng dư với 1(mod 2)
=>52003=2k+1
Mà 19 đồng dư với 9(mod 10)
=>19 đồng dư với -1(mod 10)
=>192 đồng dư với (-1)2(mod 10)
=>192 đồng dư với 1(mod 10)
=>(192)k đồng dư với 1k(mod 10)
=>192k đồng dư với 1(mod 10)
=>192k.19 đồng dư với 1.9(mod 10)
=>192k+1 đồng dư với 9(mod 10)
=>\(19^{5^{2003}}\) đồng dư với 9(mod 10)
=>\(19^{5^{2003}}\)có tận cùng là 9
(tạm trình bày vậy vì phần đánh văn bản còn yếu, bạn hểu và trình bày đúng lại giúp mình nhé)
A:
20032003+1=20032002.2003+1=20032002+1
20032004+1=20032002.2003.2003+1=20032002.2003+1(loại số 2003 thứ hai của cả mẫu số và tử số)
B:
20032002+1=20032002+1
20032003+1=20032002.2003+1
Suy ra: A=B
\(19^{5^{2003}}=\left(...9\right)^{2003}=\left(...9\right)^{2000}.\left(...9\right)^3\)
\(=\left(...1\right).729=\left(...9\right)\)
Vậy.....
\(8^{2004}=8^{2000}.8^4=\left(...6\right).\left(...6\right)=\left(...6\right)\)
Vậy......
\(7^{2003}=7^{2000}.7^3=\left(...1\right).343=\left(...3\right)\)
Vậy......
Đặt \(A=\dfrac{2003.2004-1}{2003.2004}\) và \(B=\dfrac{2004.2005-1}{2004.2005}\)
Ta có : \(A=\dfrac{2003.2004-1}{2003.2004}=\dfrac{2003.2004}{2003.2004}-\dfrac{1}{2003.2004}\)
\(=1-\dfrac{1}{2003.2004}\)
\(B=\dfrac{2004.2005-1}{2004.2005}=\dfrac{2004.2005}{2004.2005}-\dfrac{1}{2004.2005}\)
\(=1-\dfrac{1}{2004.2005}\)
Vì \(\dfrac{1}{2003.2004}>\dfrac{1}{2004.2005}\Rightarrow1-\dfrac{1}{2003.2004}< 1-\dfrac{1}{2004.2005}\)
Nên \(A< B\)
Vậy \(\dfrac{2003.2004-1}{2003.2004}< \dfrac{2004.2005-1}{2004.2005}\)
~ Học tốt ~