Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(99^{99^{99}}=99^{2k}.99=...01.99=...99\)
\(6^{666}=\left(6^5\right)^{133}.6=...76^{133}.6=...76.6=...56\)
L I K E nha

51^51=51^2^25.51=2601^25.51
2601^25 có c/s tận cùng là 1(vì các số có tận cùng là 1 dù nâng lên lũy thừa nào khác 0 cũng giữ nguyên c/s tận cùng là 1)
=>2601^51.51 có c/s tận cùng là 1=>51^51 có c/s tận cùng là 1


1035 +2 = 100..........2 chia hết cho 3 vì (1+0+0+..........+0+2 =3 chia hết cho 3)
9999... có tận cùng là 9

\(99^{99^{99}}\)
Ta có:\(99^{99}=99^{98}.99\)
\(=\left(99^2\right)^{49}.99\)
\(=\left(...01\right)^{49}.99\)
\(=\left(...01\right).99\)
\(=\left(...99\right)\)
\(\Rightarrow99^{99^{99}}=\left(...99\right)^{99}\)
\(=\left(99\right)^{98}.\left(...99\right)\)
\(=\left(\left(99\right)^2\right)^{49}.\left(...99\right)\)
\(=\left(...01\right)^{49}.\left(...99\right)\)
\(=\left(...01\right).\left(...99\right)\)
\(=\left(...99\right)\)
vậy chữ số tận cùng của\(99^{99^{99}}\)là \(\left(...99\right)\)
mình vừa biết làm các cậu xem có đúng ko?

Bài 1:
a; 2\(^{2009}\) = (2\(^4\))\(^{502}\).2 = \(\overline{..6}^{502}\).2 = \(\overline{..2}\)
b; \(3^{2010}\) = \(\left(3^4\right)^{502}\).3\(^2\) = \(\overline{..1^{^{}}}\) \(^{502}\).9 = \(\overline{..9}\)
c; 9\(^{999}\) = \(\left(9^2\right)^{499}\).9 = \(\overline{..1}\).9 = \(\overline{..9}\)
d; 134\(^{345}\) = (134\(^2\))\(^{172}\).134 = \(\overline{..6}\) \(^{172}\) .134 = \(\overline{..4}\)
e; 167\(^{421}\) = (167\(^4\))\(^{105}\).167 = \(\overline{..1}\) \(^{105}\).7 = \(\overline{..7}\)
Ta có:
\(99^2-1=9800\) chia hết cho 10
=> \(99^2\)chia 10 dư 1 => \(\left(99^2\right)^{49}\)chia 10 dư 1
và \(99\)chia 10 dư 9
=> \(99^{99}=99^{98}.99=\left(99^2\right)^{49}.99\)chia 10 dư 9
Đặt: \(99^{99}=10k+9\)
Vì \(9^{10}\)có hai chữ số tận cùng là 01
và \(9^9\) có hai chữ số tận cùng là 89
Nên : \(9^{99^{99}}=9^{10k+9}=\left(9^{10}\right)^k.9^9\)có 2 chữ số tận cùng là 89