Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(7^{2025}=7^{2014}.7=\left(7^2\right)^{1007}.7=.......9^{1007}.7=.......9.7=.....63\)
Bạn zô youtube để hỉu rõ hơn nka!!
mk bít bài này:
a) gọi 3 số chẵn đó là: a, a + 2, a + 4
theo bài ra, ta có:
(a + 2) (a + 4) - [a . (a + 2)] = 192
=> a2 + 6a + 8 - (a2 + 2a) = 192
=> a2 + 6a + 8 - a2 - 2a = 192
=> 4a + 8 = 192
=> 4a = 184
=> a = 46
=> a + 2 = 46 + 2 = 48; a + 4 = 46 + 4 = 50
Vậy 3 số chẵn đó lần lượt là: 46, 48, 50
b)gọi 4 số tự nhiên liên tiếp đó là x,x+1,x+2,x+3
Theo bài ra ta có :x(x+1)+146=(x+2)(x+3)
<=>x^2+x+146=x^2+5x+6
<=>4x=140
<=>x=35
Vậy 4 số tự nhiên đó là 35,36,37,38
Gọi số chính phương cần tìm là n2n2
Có:
:n2=100A+bn2=100A+b ( A là số trăm,1≤b≤991≤b≤99)
Theo bài ra ta có 100A là số chính phương
⇒A⇒A là số chính phương
Đặt A=x2A=x2
Có: n2>100x2n2>100x2
⇒n>10x⇒n>10x
⇒n≥10x+1⇒n≥10x+1
⇒n2≥(10x+1)2⇒n2≥(10x+1)2
⇒100x2+b≥100x2+20x+1⇒100x2+b≥100x2+20x+1
⇒b≥20x+1⇒b≥20x+1
Mà b≤99b≤99
⇒20x+1≤99⇒20x+1≤99
⇒x≤4⇒x≤4
Ta có :
n2=100x2+b≤1600+99n2=100x2+b≤1600+99
⇒n2=100x2+b≤1699⇒n2=100x2+b≤1699
Chỉ có 412=1681(tm)412=1681(tm)
Vậy số chính phương lớn nhất phải tìm là 412=1681
Gia su aabb = n2
<=> a.103+a.102+b.10+b=n2
<=> 11(100a+b)=n2
=> n2 chia hết cho 11
=> n chia hết cho 11
Do n2 co 4 chu so nen 32<n<100
=> n=33 ; n=44; ....n=99
Thử vào thì n=88 là thỏa mãn
vậy A=7744