Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=x^2+y^2-x+6y+10\)
\(=\left(x-\frac{1}{2}\right)^2+\left(y-3\right)^2+\frac{3}{4}\)
\(\left(x-\frac{1}{2}\right)^2\ge0;\)\(\left(y-3\right)^2\ge0\)
\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\left(y-3\right)^2\ge0\)
\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\left(y-3\right)^2+\frac{3}{4}\ge0+\frac{3}{4}=\frac{3}{4}\)
\(\Rightarrow A\ge\frac{3}{4}\)
Dấu"=" xảy ra khi \(\left(x-\frac{1}{2}\right)^2=0\Leftrightarrow x=\frac{1}{2};\left(y-3\right)^2=0\Leftrightarrow y=3\)
Vậy \(MinA=\frac{3}{4}\Leftrightarrow x=\frac{1}{2};y=3\)
\(Q=2x^2-6x\)
\(Q=2.(x^2 - 2.\dfrac{3}{2}.x+\dfrac{9}{4}\text{)}-\dfrac{9}{2} \)
\(Q=2.(x-\dfrac{3}{2})^2-\dfrac{9}{2}\ge\dfrac{-9}{2}\)
\(\Rightarrow Min_A=\dfrac{-9}{2}\) khi \(x=\dfrac{3}{2}\) .
\(M=x^2+y^2-x+6y+10\)
\(M=\left(x^2-x+\dfrac{1}{4}\right)+\left(y^2+6y+9\right)+\dfrac{3}{4}\)
\(M=\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}\)
\(M=\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2\ge0\)
\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
\(\Rightarrow Min_M=\dfrac{3}{4}\) khi \(x=\dfrac{1}{2},y=-3.\)
x+y-x+6y+10= x2-x+\(\frac{1}{4}\)+y2+6y+9+\(\frac{3}{4}\)=(x-\(\frac{1}{2}\))2+(y+3)2+\(\frac{3}{4}\) ≥\(\frac{3}{4}\)
Daauus bằng xảy ra khi và chỉ khi x=\(\frac{1}{2}\) và y= -3
Suy ra Min= \(\frac{3}{4}\)
xét x2 + y2 - x + 6y + 10
= ( x2 - 2 . x .1/2 + 1/4) + ( y2 + 2 .y .3 + 9) + 3/4
= (x + 1/2)2 + (y + 3)2 + 3/4
Vì (x + 1/2) 2 > 0 vói mọi x
( y + 3)2 > vưới mọi x
3/4 > 0
=> (x + 1/2)2 + (y+3)2 + 3/4
=> M có GTNN là 3/4 <=> (x+1/2)2 = 0 -> x + 1/2=0 -> x = -1/2
và (y + 3)2 = 0 -> y +3 = 0 -> y =-3
Vậy M có GTNN là 3/4 khi x = -1/2 và y =-3
đấy là 1 cahs tách cậu có thể tìm và tham khảo các cách khác : '> đừng thụ động quá nhé
\(A=x^2-5x+12\\ A=x^2-5x+\dfrac{25}{4}+\dfrac{23}{4}\\ A=\left(x^2-5x+\dfrac{25}{4}\right)+\dfrac{23}{4}\\ A=\left[x^2-2\cdot x\cdot\dfrac{5}{2}+\left(\dfrac{5}{2}\right)^2\right]+\dfrac{23}{4}\\ A=\left(x-\dfrac{5}{2}\right)^2+\dfrac{23}{4}\\ Do\text{ }\left(x-\dfrac{5}{2}\right)^2\ge0\forall x\\ \Rightarrow A=\left(x-\dfrac{5}{2}\right)^2+\dfrac{23}{4}\ge\dfrac{23}{4}\forall x\\ \text{Dấu "=" xảy ra khi : }\\ \left(x-\dfrac{5}{2}\right)^2=0\\ \Leftrightarrow x-\dfrac{5}{2}=0\\ \Leftrightarrow x=\dfrac{5}{2}\\ \text{Vậy }A_{\left(Min\right)}=\dfrac{23}{4}\text{ }khi\text{ }x=\dfrac{5}{2}\)
\(B=2x^2-14x+5\\ \\ A=2x^2-14x+\dfrac{49}{2}-\dfrac{39}{2}\\ A=\left(2x^2-14x+\dfrac{49}{2}\right)-\dfrac{39}{2}\\ A=2\left(x^2-7x+\dfrac{49}{4}\right)-\dfrac{39}{2}\\ A=\left[x^2-2\cdot x\cdot\dfrac{7}{2}+\left(\dfrac{7}{2}\right)^2\right]-\dfrac{39}{2}\\ A=\left(x-\dfrac{7}{2}\right)^2-\dfrac{39}{2}\\ Do\text{ }\left(x-\dfrac{7}{2}\right)^2\ge0\forall x\\ \Rightarrow A=\left(x-\dfrac{7}{2}\right)^2-\dfrac{39}{2}\ge-\dfrac{39}{2}\forall x\\ \text{Dấu "=" xảy ra khi : }\\ \left(x-\dfrac{7}{2}\right)^2=0\\ \Leftrightarrow x-\dfrac{7}{2}=0\\ \Leftrightarrow x=\dfrac{7}{2}\\ \text{Vậy }B_{\left(Min\right)}=-\dfrac{39}{2}\text{ }khi\text{ }x=\dfrac{7}{2}\)
\(B=2x^2-14x+5\\ B=2x^2-14x+\dfrac{49}{2}-\dfrac{39}{2}\\ B=\left(2x^2-14x+\dfrac{49}{2}\right)-\dfrac{39}{2}\\ B=2\left(x^2-7x+\dfrac{49}{4}\right)-\dfrac{39}{2}\\ B=2\left[x^2-2\cdot x\cdot\dfrac{7}{2}+\left(\dfrac{7}{2}\right)^2\right]-\dfrac{39}{2}\\ B=2\left(x-\dfrac{7}{2}\right)^2-\dfrac{39}{2}\\ \)
Do \(\left(x-\dfrac{7}{2}\right)^2\ge0\forall x\)
\(\Rightarrow2\left(x-\dfrac{7}{2}\right)^2\ge0\forall x\)
\(\Rightarrow B=2\left(x-\dfrac{7}{2}\right)^2-\dfrac{39}{2}\ge-\dfrac{39}{2}\forall x\)
Dấu \("="\) xảy ra khi :
\(\left(x-\dfrac{7}{2}\right)^2=0\\ \Leftrightarrow x-\dfrac{7}{2}=0\\ \Leftrightarrow x=\dfrac{7}{2}\)
Vậy \(B_{\left(Min\right)}=-\dfrac{39}{2}\) khi \(x=\dfrac{7}{2}\)
Do máy bị lỗi nên câu B bị trục trặc.
Mk xin lỗi.
\(Q=3xy\left(x+3y\right)-2xy\left(x+4y\right)-x^2\left(y-1\right)+y^2\left(1-x\right)+36\)\(\Leftrightarrow Q=3x^2y+9xy^2-2x^2y-8xy^2-x^2y+x^2+y^2-xy^2+36\)\(\Leftrightarrow Q=\left(3x^2y-2x^2y-x^2y\right)+\left(9xy^2-8xy^2-xy^2\right)+x^2+y^2+36\)\(\Leftrightarrow Q=x^2+y^2+36\ge36\forall x;y\)
Dấu " = " xảy ra
\(\Leftrightarrow\left\{{}\begin{matrix}x^2=0\\y^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
Vậy Min Q là : \(36\Leftrightarrow x=y=0\)
Bài 1 :
\(a+b+c=0\)
\(\Rightarrow\left(a+b+c\right)^2=0^2\)
\(a^2+b^2+c^2+2ab+2ac+2bc=0\)
\(\Rightarrow a^2+b^2+c^2=-2\left(ab+bc+ac\right)\)
\(\Rightarrow\left[a^2+b^2+c^2\right]^2=\left[-2\left(ab+bc+ac\right)\right]^2\)
\(\Rightarrow a^4+b^4+c^4+2a^2b^2+2a^2c^2+2b^2c^2=4\left(a^2b^2+b^2c^2+a^2c^2+2ab.bc+2bc.ac+2ab.ac\right)\)
\(\Rightarrow a^4+b^4+c^4+2a^2b^2+2a^2c^2+2b^2c^2=4a^2b^2+4b^2c^2+4a^2c^2+8abc\left(a+b+c\right)\)
Mà \(a+b+c=0\)
\(\Rightarrow a^4+b^4+c^4+2a^2b^2+2a^2c^2+2b^2c^2=4a^2b^2+4b^2c^2+4a^2c^2\)
Bớt cả 2 vế đi \(2a^2b^2+2a^2c^2+2b^2c^2;\)có :
\(\Rightarrow a^4+b^4+c^4=2a^2b^2+2a^2c^2+2b^2c^2\)
Cộng cả 2 vế với \(a^4+b^4+c^4;\)có :
\(2\left(a^4+b^4+c^4\right)=\left(a^2+b^2+c^2\right)^2\)( Hằng đẳng thức bình phương tổng 3 hạng tử )
Vậy ...
Bình phương cả 2 vế của a + b + c = 0,ta có :
a2 + b2 + c2 + 2(ab + bc + ca) => a2 + b2 + c2 = -2(ab + bc + ca).Bình phương cả 2 vế của đẳng thức bên,ta có :
a4 + b4 + c4 + 2(a2b2 + b2c2 + a2c2) = 4[a2b2 + b2c2 + a2c2 + 2abc(a + b + c)] = 4(a2b2 + b2c2 + a2c2)
=> a4 + b4 + c4 = 2(a2b2 + b2c2 + a2c2)
=> (a2 + b2 + c2)2 = a4 + b4 + c4 + 2(a2b2 + b2c2 + a2c2) = a4 + b4 + c4 + a4 + b4 + c4 = 2(a4 + b4 + c4)
Bạn ko hiểu chỗ nào thì hỏi mình nhé!
M=x2+y2-x+6y+10
=(x-1/2)2+(y+3)3+3/4
Ta thấy:(x-1/2)2>=0
(y+3)3>=0
=>(x-1/2)2+(y+3)>=0
=>(x-1/2)2+(y+3)+3/4>=0+3/4=3/4
Dấu "="<=>x=1/2 hoặc y=-3
Vậy...
GTNN của biểu thức M là 10