K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\text{A=3x^2+4x-2}\)

\(=3\left(x+\frac{2}{3}\right)^2-\frac{10}{3}\ge-\frac{10}{3}\)

Dấu ''='' xảy ra khi \(x+\frac{2}{3}=0\Rightarrow x=-\frac{2}{3}\)

2 tháng 7 2019

Câu B mình type lỗi,sửa nha

B=4x/x2-x+4

22 tháng 8 2020

A = x2 - 4x + 1 

A = ( x2 - 4x + 4 ) - 3

A = ( x - 2 )2 - 3

( x - 2 )2 ≥ 0 ∀ x => ( x - 2 )2 - 3 ≥ -3

Đẳng thức xảy ra <=> x - 2 = 0 => x = 2

=> MinA = -3 <=> x = 2

B = 4x2 + 4x + 11

B = 4( x2 + x + 1/4 ) + 10

B = 4( x + 1/2 )2 + 10

4( x + 1/2 )2 ≥ 0 ∀ x => 4( x + 1/2 )2 + 10 ≥ 10

Đẳng thức xảy ra <=> x + 1/2 = 0 => x = -1/2

=> MinB = 10 <=> x = -1/2

C = ( x - 1 )( x + 3 )( x + 2 )( x + 6 )

C = [ ( x - 1 )( x + 6 ) ][ ( x + 3 )( x + 2 ) ]

C = [ x2 + 5x - 6 ][ x2 + 5x + 6 ]

C = ( x2 + 5x )2 - 62 = ( x2 + 5x )2 - 36

( x2 + 5x )2 ≥ 0 ∀ x => ( x2 + 5x )2 - 36 ≥ -36

Đẳng thức xảy ra <=> x2 + 5x = 0

                             <=> x( x + 5 ) = 0

                             <=> \(\orbr{\begin{cases}x=0\\x+5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)

=> MinC = -36 <=> x = 0 hoặc x = -5

D = 5 - 8x - x2

D = -( x2 + 8x + 16 ) + 21

D = -( x + 4 )2 + 21

-( x + 4 )2 ≤ 0 ∀ x => -( x + 4 )2 + 21 ≤ 21

Đẳng thức xảy ra <=> x + 4 = 0 => x = -4

=> MaxD = 21 <=> x = -4

E = 4x - x2 + 1

E = -( x2 - 4x + 4 ) + 5

E = -( x - 2 )2 + 5

-( x - 2 )2 ≤ 0 ∀ x => -( x - 2 )2 + 5 ≤ 5 

Đẳng thức xảy ra <=> x - 2 = 0 => x = 2

=> MaxE = 5 <=> x = 2

\(A=x^2+4\ge4\)

vậy giá trị nhỏ nhất của biểu thức là 4 khi x = 0 

\(x^2+4x+4=\left(x+2\right)^2\)

Vì \(x\ne-2;x>0\)

nên biểu thức có giá trị nhỏ nhất là 9 khi x = 1

11 tháng 7 2019

b) \(x^2+4x+4=\left(x+2\right)^2\)

Vì \(\left(x+2\right)^2\ge0;\forall x\)

Dấu "=" xảy ra\(\Leftrightarrow x+2=0\)

                        \(\Leftrightarrow x=-2\)

Vậy MIN của biêu thức =0 \(\Leftrightarrow x=-2\)

31 tháng 7 2017

\(A=x^2-2x.\frac{3}{2}+\frac{9}{4}+\frac{11}{4}\)

\(A=\left(x-\frac{3}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}\)

MIN A=\(\frac{11}{4}\Leftrightarrow x=\frac{3}{2}\)

7 tháng 11 2017

 

Ta có : A = x2 - 6x + 15 

= x2 - 6x + 9 + 6

= (x - 3)2 + 6 6xR

Vậy Amin = 6 khi x = 3.

 
 
5 tháng 7 2017

Ta có : 9x2 + 12x + 15

= (3x)2 + 2.3x.2 + 4 + 11

= (3x + 2)2 + 11

Mà (3x + 2)2 \(\ge0\forall x\)

Nên (3x + 2)2 + 11 \(\ge11\forall x\)

Vậy Bmin = 11 dấu "=" sảy ra khi và chỉ khi x = \(-\frac{2}{3}\)

5 tháng 7 2017

Ta có : A = x2 - 4x - 6 

= x2 - 4x + 4 - 10

= (x - 2)2 - 10

Mà (x - 2)\(\ge0\forall x\)

=> (x - 2)2 - 10 \(\ge-10\forall x\)

Vậy Amin = -10 dấu "=" sảy ra khi và chỉ khi x = 2

22 tháng 7 2017

\(=\left(x^2-2.x.2-4\right)-4\)

=\(^{\left(x-2\right)^2-4}\)

vậy GTNN =-4 tại x=2

22 tháng 7 2017

mới học nên thông cảm

11 tháng 11 2018

\(A=x^2-4x-1\)

\(=x^2-4x+4-5\)

\(=\left(x-2\right)^2-5\) \(\ge-5\)

Dấu = xảy ra <=> x-2=0 <=> x=2