Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
Tìm max:
Áp dụng BĐT Bunhiacopxky ta có:
\(y^2=(3\sqrt{x-1}+4\sqrt{5-x})^2\leq (3^2+4^2)(x-1+5-x)\)
\(\Rightarrow y^2\leq 100\Rightarrow y\leq 10\)
Vậy \(y_{\max}=10\)
Dấu đẳng thức xảy ra khi \(\frac{\sqrt{x-1}}{3}=\frac{\sqrt{5-x}}{4}\Leftrightarrow x=\frac{61}{25}\)
Tìm min:
Ta có bổ đề sau: Với $a,b\geq 0$ thì \(\sqrt{a}+\sqrt{b}\geq \sqrt{a+b}\)
Chứng minh:
\(\sqrt{a}+\sqrt{b}\geq \sqrt{a+b}\)
\(\Leftrightarrow (\sqrt{a}+\sqrt{b})^2\geq a+b\)
\(\Leftrightarrow \sqrt{ab}\geq 0\) (luôn đúng).
Dấu "=" xảy ra khi $ab=0$
--------------------
Áp dụng bổ đề trên vào bài toán ta có:
\(\sqrt{x-1}+\sqrt{5-x}\geq \sqrt{(x-1)+(5-x)}=2\)
\(\sqrt{5-x}\geq 0\)
\(\Rightarrow y=3(\sqrt{x-1}+\sqrt{5-x})+\sqrt{5-x}\geq 3.2+0=6\)
Vậy $y_{\min}=6$
Dấu "=" xảy ra khi \(\left\{\begin{matrix} (x-1)(5-x)=0\\ 5-x=0\end{matrix}\right.\Leftrightarrow x=5\)
Bài 2:
\(A=\sqrt{(x-1994)^2}+\sqrt{(x+1995)^2}=|x-1994|+|x+1995|\)
Áp dụng BĐT dạng \(|a|+|b|\geq |a+b|\) ta có:
\(A=|x-1994|+|x+1995|=|1994-x|+|x+1995|\geq |1994-x+x+1995|=3989\)
Vậy \(A_{\min}=3989\)
Đẳng thức xảy ra khi \((1994-x)(x+1995)\geq 0\Leftrightarrow -1995\leq x\leq 1994\)
Cần điều kiện x;y dương
\(M=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\ge\frac{1}{2}\left(x+\frac{1}{x}+y+\frac{1}{y}\right)^2\)
\(M\ge\frac{1}{2}\left(x+y+\frac{1}{x}+\frac{1}{y}\right)^2\ge\frac{1}{2}\left(x+y+\frac{4}{x+y}\right)^2=\frac{25}{2}\)
\(M_{min}=\frac{25}{2}\) khi \(x=y=\frac{1}{2}\)
theo nghiệm Fx=Gx mũ 2
suy ra x mũ 2 +1 mũ x 2
suy ra chịch chịch chịch
Ta có : \(M=\frac{x}{\left(x+1995\right)^2}\)
Đặt \(x+1995=y\left(y\ne0\right)\)
\(\Rightarrow x=y-1995\)
\(\Rightarrow M=\frac{y-1995}{y^2}\)
\(M=\frac{1}{y}-\frac{1995}{y^2}\)
\(-1995M=-\frac{1995}{y}+\frac{1995^2}{y^2}\)
\(-1995M=\left(\frac{1995^2}{y^2}-\frac{1995}{y}+\frac{1}{4}\right)-\frac{1}{4}\)
\(-1995M=\left(\frac{1995}{y}-\frac{1}{2}\right)^2+\frac{1}{4}\)
Do \(\left(\frac{1995}{y}-\frac{1}{2}\right)^2\ge0\forall y\)
\(\Rightarrow-1995M\ge\frac{1}{4}\)
\(\Leftrightarrow M\le-\frac{1}{7980}\)
Dấu "=" xảy ra khi :
\(\frac{1995}{y}-\frac{1}{2}=0\)
\(\Leftrightarrow\frac{1995}{y}=\frac{1}{2}\Leftrightarrow y=3990\)
Mà \(x=y-1995\)
\(\Leftrightarrow x=3990-1995=1995\)
Vậy \(M_{Max}=-\frac{1}{7980}\Leftrightarrow x=1995\)
cách khác nha :
https://olm.vn/hoi-dap/question/1193316.html
:))