K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 9 2016

Ta có : 

\(M=x^2+y^2-x+6y+10\)

     \(=\left(x^2-x+\frac{1}{4}\right)+\left(y^2+6y+9\right)+\frac{3}{4}\)

     \(=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\)

Có : \(\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2\ge0\)

\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Dấu " = " xảy ra khi và chỉ khi \(x-\frac{1}{2}=0\);\(y+3=0\)

                                                  \(\Leftrightarrow\begin{cases}x=\frac{1}{2}\\y=-3\end{cases}\)

Vậy \(Min_A=\frac{3}{4}\) khi và chỉ khi \(\begin{cases}x=\frac{1}{2}\\y=-3\end{cases}\)

                                                   

 

a: Ta có: \(x^2\ge0\forall x\)

\(\left(y-\dfrac{1}{10}\right)^4\ge0\forall y\)

Do đó: \(x^2+\left(y-\dfrac{1}{10}\right)^4\ge0\forall x,y\)

Dấu '=' xảy ra khi \(\left(x,y\right)=\left(0;\dfrac{1}{10}\right)\)

12 tháng 9 2021

\(B=\left(x-2y\right)^2+y^2+2x+6y+2046=\left[\left(x-2y\right)^2+2\left(x-2y\right)+1\right]+\left(y^2+10y+25\right)+2020=\left(x-2y+1\right)^2+\left(y+5\right)^2+2020\ge2020\)

\(minB=2020\Leftrightarrow\)\(\left\{{}\begin{matrix}x=-11\\y=-5\end{matrix}\right.\)